• Alexander, P., 2003: A numerical study of open atmospheric balloon dynamics. Phys. Fluids, 15, 30653078.

  • Bingham, G. E., and Coauthors, 2009: Lidar based emissions measurement at the whole facility scale: Method and error analysis. J. Appl. Remote Sens., 3, 033522, doi:10.1117/1.3097919.

    • Search Google Scholar
    • Export Citation
  • Brown, P. P., , and Lawler D. F. , 2003: Sphere drag and settling velocity revisited. J. Environ. Eng., 129, 222231.

  • Constantinescu, G., , and Squires K. , 2004: Numerical investigations of flow over a sphere in the subcritical and supercritical regimes. Phys. Fluids, 16, 14491466.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., , and Murillo J. , 2008: The Pan-American Climate Sounding Network. Bull. Amer. Meteor. Soc., 89, 17091725.

  • EPA, 2000: Meteorological monitoring guidance for regulatory modeling applications. EPA Rep. EPA-454/R-99-005, 168 pp. [Available online at http://www.epa.gov/ttn/scram/guidance/met/mmgrma.pdf.]

  • Fichtl, G. F., , DeMandel R. E. , , and Krivo S. J. , 1972: Aerodynamic properties of spherical balloon wind sensors. J. Appl. Meteor., 11, 472481.

    • Search Google Scholar
    • Export Citation
  • Göz, M. F., , Lain S. , , and Sommerfeld M. , 2004: Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng., 28, 27272733.

    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., , Oberle H. J. , , and Freytag C. , 1980: An error analysis of the double-theodolite pibal method with examples from the Slope-wind Experiment Innsbruck 1978. Contrib. Atmos. Phys., 53, 336350.

    • Search Google Scholar
    • Export Citation
  • Jacobs, W. N., 1968: Automatic pibal tracking system. White Sands Missile Range, Atmospheric Sciences Laboratory Rep. ECOM-5109, 9 pp.

  • Jenny, M., , and Dušek J. , 2004: Efficient numerical method for the direct numerical simulation of the flow past a single light moving spherical body in transitional regimes. J. Comput. Phys., 194, 215232.

    • Search Google Scholar
    • Export Citation
  • Karamanev, D. G., , Chavarie C. , , and Mayer R. C. , 1996: Dynamics of the free rise of a light solid sphere in liquid. AIChE J., 42, 17891792.

    • Search Google Scholar
    • Export Citation
  • Kubinski, S. F., 1967: A comparative evaluation of the automatic tracking pilot balloon wind measuring system. White Sands Missile Range, Atmospheric Sciences Laboratory Rep. ECOM -5121, 58 pp.

  • Marchant, A. B., , Jeppson K. D. , , and Scott R. T. , 2010: Conspicuity tape for enhanced laser range finding. Opt. Eng., 49, 046401, doi:10.1117/1.3378104.

    • Search Google Scholar
    • Export Citation
  • Marchant, C. C., and Coauthors, 2009: Aglite lidar: A portable elastic lidar system for investigating aerosol and wind motions at or around agricultural production facilities. J. Appl. Remote Sens., 3, 033511, doi:10.1117/1.3097928.

    • Search Google Scholar
    • Export Citation
  • Mejia, J. F., , Murillo J. , , Galvez J. M. , , and Douglas M. W. , 2006: Accuracy of the NCAR global tropospheric analysis (FNL) over central South America based upon upper air observations collected during the SALLJEX. Proc. Eighth ICSHMO, Foz do Iguaçu, Brazil, INPE, 1759–1764.

  • Middleton, W. E. K., 1969: Invention of the Meteorological Instruments. Johns Hopkins Press, 362 pp.

  • Middleton, W. E. K., , and Spilhaus A. F. , 1953: Meteorological Instruments. 3rd ed. University of Toronto Press, 286 pp.

  • Morris, A. L., Ed., 1975: Scientific ballooning handbook. NCAR Tech. Note NCAR-TN/IA-99, 259 pp.

  • Nastrom, G. D., , and VanZandt T. E. , 1982: An analytical study of nonlinear responses of rising balloons to horizontal winds. J. Appl. Meteor., 21, 413419.

    • Search Google Scholar
    • Export Citation
  • Netterville, D. D. J., , and Djurfors S. G. , 1979: Controlling inherent uncertainties in double theodolite measurements. J. Appl. Meteor., 18, 13711375.

    • Search Google Scholar
    • Export Citation
  • NOAA, 1997: Rawinsonde and pibal observations. U.S. Department of Commerce/NOAA, Federal Meteorological Handbook 3, FCM-H3-1997, 191 pp. [Available online at http://www.ofcm.gov/fmh3/pdf/00-entire-FMH3.pdf.]

  • Reid, D. F., 1964: Instability of spherical wind-sensing balloons. Proceedings of the 1964 AFCRL Scientific Balloon Symposium, AFCRL-65-486, Air Force Surveys in Geophysics No. 167, 213–227.

  • Rider, J. R., , and Almendariz M. , 1966: A comparison of tower and pibal wind measurements. J. Appl. Meteor., 5, 4348.

  • Scoggins, J. R., 1964: Aerodynamics of spherical balloon wind sensors. J. Geophys. Res., 69 (4), 591598.

  • Scoggins, J. R., 1965: Spherical balloon wind sensor behavior. J. Appl. Meteor., 4, 139145.

  • Scoggins, J. R., 1967: Sphere behavior and the measurement of wind profiles. NASA Marshall Space Flight Center Tech. Note D-3994, 53 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670017960_1967017960.pdf.]

  • Shirolkar, J. S., , Coimbra C. F. M. , , and Queiroz M. , 1996: Fundamental aspects of modeling turbulent particle dispersion in dilute flow. Prog. Energy Combust. Sci., 22, 363399.

    • Search Google Scholar
    • Export Citation
  • Stelson, T. E., , and Mavis F. T. , 1955: Virtual mass and acceleration in fluids. Trans. Amer. Soc. Civ. Eng., 122, 518530.

  • Susko, M., 1967: Wind comparison analysis of pibal versus anemometer. NASA Marshall Space Flight Center Tech. Memo. X-53663, 24 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680006245_1968006245.pdf.]

  • Thyer, N., 1962: Double theodolite pibal evaluation by computer. J. Appl. Meteor., 1, 6668.

  • Wang, J. Y., , and Felton C. M. M. , 1983: Instruments for Physical Environmental Measurements. 2nd ed. Kendall/Hunt Publishing, 378 pp.

  • Whiteman, C. D., and Coauthors, 2008: METCRAX 2006: Meteorological experiments in Arizona’s meteor crater. Bull. Amer. Meteor. Soc., 89, 16651680.

    • Search Google Scholar
    • Export Citation
  • Wilkerson, T., , Bradford B. , , Marchant A. , , Apedaile T. , , and Wright C. , 2009a: VisibleWind: Wind profile measurements at low altitude. Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing V, U. N. Singh and G. Pappalardo, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7479), 74790L, doi:10.1117/12.832046.

  • Wilkerson, T., , Bradford B. , , Marchant A. , , Wright C. , , Apedaile T. , , Fowles E. , , Howard A. , , and Naini T. , 2009b: VisibleWind: A rapid-response system for high-resolution wind profiling. Lidar Remote Sensing for Environmental Monitoring X, U. N. Singh, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7460), 746008, doi:10.1117/12.826368.

  • Wilkerson, T., , Marchant A. , , Apedaile T. , , Simmons J. , , and Bradford B. , 2010: ValidWind applications: Wind power prospecting and aerosol transport. Lidar Technology, Techniques, and Measurements for Atmospheric Remote Sensing VI, U. N. Singh and G. Pappalardo, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7832), 783207, doi:10.1117/12.868157.

  • WMO, 2008: Guide to Meteorological Instruments and Methods of Observation. 7th ed. WMO-No 8, Secretariat of the World Meteorological Organization, 681 pp.

  • Zavyalov, V. V., and Coauthors, 2009: Aglite lidar: Calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar. J. Appl. Remote Sens., 3, 033530, doi:10.1117/1.3122363.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 3
PDF Downloads 23 23 4

Wind Field Characterization from the Trajectories of Small Balloons

View More View Less
  • 1 Energy Dynamics Laboratory, Utah State University Research Foundation, North Logan, Utah
© Get Permissions
Restricted access

Abstract

This paper reports the development and application of a new wind sensing system, ValidWind. ValidWind consists of small, helium-filled tracer balloons and an instrument that tracks them with high spatial resolution by means of an eye-safe lidar rangefinder and records 3D balloon position as a function of time. Lightweight retroreflectors attached to the balloons enhance the optical range. Balloon tracking is automatic. The data products include horizontal wind speed, wind direction, and vertical shear as functions of time and geolocation. Vertical wind speeds can be inferred from variations of the balloons’ rate of rise given the balance between buoyancy and aerodynamic drag. Applications of ValidWind include characterization of katabatic and ridge-top wind fields and monitoring of windborne aerosol transport. The capability of ValidWind balloons to provide useful profiles of the wind from the ground up to an altitude of 2 km AGL is presented and analyzed.

Corresponding author address: Alan B. Marchant, Energy Dynamics Laboratory, Utah State University Research Foundation, 1695 Research Park Way, North Logan, UT 84341. E-mail: alan.marchant@usu.edu

Abstract

This paper reports the development and application of a new wind sensing system, ValidWind. ValidWind consists of small, helium-filled tracer balloons and an instrument that tracks them with high spatial resolution by means of an eye-safe lidar rangefinder and records 3D balloon position as a function of time. Lightweight retroreflectors attached to the balloons enhance the optical range. Balloon tracking is automatic. The data products include horizontal wind speed, wind direction, and vertical shear as functions of time and geolocation. Vertical wind speeds can be inferred from variations of the balloons’ rate of rise given the balance between buoyancy and aerodynamic drag. Applications of ValidWind include characterization of katabatic and ridge-top wind fields and monitoring of windborne aerosol transport. The capability of ValidWind balloons to provide useful profiles of the wind from the ground up to an altitude of 2 km AGL is presented and analyzed.

Corresponding author address: Alan B. Marchant, Energy Dynamics Laboratory, Utah State University Research Foundation, 1695 Research Park Way, North Logan, UT 84341. E-mail: alan.marchant@usu.edu
Save