Observation-Consistent Input and Whitecapping Dissipation in a Model for Wind-Generated Surface Waves: Description and Simple Calculations

W. Erick Rogers Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by W. Erick Rogers in
Current site
Google Scholar
PubMed
Close
,
Alexander V. Babanin Faculty of Engineering and Industrial Science, Swinburne University of Technology, Melbourne, Victoria, Australia

Search for other papers by Alexander V. Babanin in
Current site
Google Scholar
PubMed
Close
, and
David W. Wang Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by David W. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new wind-input and wind-breaking dissipation for phase-averaged spectral models of wind-generated surface waves is presented. Both are based on recent field observations in Lake George, New South Wales, Australia, at moderate-to-strong wind-wave conditions. The respective parameterizations are built on quantitative measurements and incorporate new observed physical features, which until very recently were missing in source terms employed in operational models. Two novel features of the wind-input source function are those that account for the effects of full airflow separation (and therefore relative reduction of the input at strong wind forcing) and for nonlinear behavior of this term. The breaking term also incorporates two new features evident from observational studies; the dissipation consists of two parts—a strictly local dissipation term and a cumulative term—and there is a threshold for wave breaking, below which no breaking occurs. Four variants of the dissipation term are selected for evaluation, with minimal calibration to each. These four models are evaluated using simple calculations herein. Results are generally favorable. Evaluation for more complex situations will be addressed in a forthcoming paper.

Corresponding author address: W. Erick Rogers, Oceanography Division, Code 7322, Naval Research Laboratory, Stennis Space Center, MS 39529. E-mail: erick.rogers@nrlssc.navy.mil

Abstract

A new wind-input and wind-breaking dissipation for phase-averaged spectral models of wind-generated surface waves is presented. Both are based on recent field observations in Lake George, New South Wales, Australia, at moderate-to-strong wind-wave conditions. The respective parameterizations are built on quantitative measurements and incorporate new observed physical features, which until very recently were missing in source terms employed in operational models. Two novel features of the wind-input source function are those that account for the effects of full airflow separation (and therefore relative reduction of the input at strong wind forcing) and for nonlinear behavior of this term. The breaking term also incorporates two new features evident from observational studies; the dissipation consists of two parts—a strictly local dissipation term and a cumulative term—and there is a threshold for wave breaking, below which no breaking occurs. Four variants of the dissipation term are selected for evaluation, with minimal calibration to each. These four models are evaluated using simple calculations herein. Results are generally favorable. Evaluation for more complex situations will be addressed in a forthcoming paper.

Corresponding author address: W. Erick Rogers, Oceanography Division, Code 7322, Naval Research Laboratory, Stennis Space Center, MS 39529. E-mail: erick.rogers@nrlssc.navy.mil
Save
  • Alves, J. H. G. M., and Banner M. L. , 2003: Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J. Phys. Oceanogr., 33, 12741298.

    • Search Google Scholar
    • Export Citation
  • Alves, J. H. G. M., Banner M. L. , and Young I. R. , 2003: Revisiting the Pierson-Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr., 33, 13011323.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., Collard F. , Chapron B. , Queffeulou P. , Filipot J.-F. , and Hamon M. , 2008: Spectral wave dissipation based on observations: A global validation. Proc. Chinese-German Joint Symp. on Hydraulics and Ocean Engineering, Darmstadt, Germany, Universität Darmstadt, 391–400.

  • Ardhuin, F., Chapron B. , and Collard F. , 2009: Observation of swell dissipation across oceans. Geophys. Res. Lett., 36, L06607, doi:10.1029/2008GL037030.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2010: Semi-empirical dissipation source functions for ocean waves. Part I: Definitions, calibration, and validations. J. Phys. Oceanogr., 40, 19171941.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., 2006: On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Res. Lett., 33, L20605, doi:10.1029/2006GL027308.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., 2009: Breaking of ocean surface waves. Acta Phys. Slovaca, 59, 305535.

  • Babanin, A. V., and Soloviev Yu. P. , 1987: Parameterization of width of directional energy distributions of wind-generated waves at limited fetches. Izv. Atmos. Oceanic Phys., 23, 645651.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Soloviev Yu. P. , 1998: Variability of directional spectra of wind-generated waves, studied by means of wave staff arrays. Mar. Freshwater Res., 49, 89101.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Young I. R. , 2005: Two-phase behaviour of the spectral dissipation of wind waves. Proc. Ocean Waves Measurement and Analysis, Fifth Intern. Symp. WAVES2005, Madrid, Spain, CEDEX, Paper 51.

  • Babanin, A. V., and van der Westhuysen A. J. , 2008: Physics of “saturation-based” dissipation functions proposed for wave forecast models. J. Phys. Oceanogr., 38, 18311841.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., Young I. R. , and Banner M. L. , 2001: Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res., 106 (C6), 11 65911 676.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., Banner M. L. , Young I. R. , and Donelan M. A. , 2007a: Wave follower measurements of the wind input spectral function. Part III: Parameterization of the wind input enhancement due to wave breaking. J. Phys. Oceanogr., 37, 27642775.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., Tsagareli K. N. , Young I. R. , and Walker D. , 2007b: Implementation of new experimental input/dissipation terms for modeling spectral evolution of wind waves. Proc. 10th Int. Workshop on Wave Hindcasting and Forecasting and Coastal Hazards, Oahu, HI, U.S. Army Engineer Research and Development Center’s Coastal and Hydraulics Laboratory, Environment Canada, and WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology. [Available online at ftp://www.wmo.int/Documents/PublicWeb/amp/mmop/documents/JCOMM-TR/J-TR-44/WWW/Papers/BTYW_2007_10th_Int_Workshop_Wave_Hindcasting_Forecasting_a_.pdf.]

  • Babanin, A. V., Tsagareli K. N. , Young I. R. , and Walker D. J. , 2010: Numerical investigation of spectral evolution of wind waves. Part II: Dissipation function and evolution tests. J. Phys. Oceanogr., 40, 667683.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and Peirson W. L. , 1998: Tangential stress beneath wind-driven air-water interfaces. J. Fluid Mech., 364, 115145.

  • Banner, M. L., and Morison R. P. , 2010: Refined source terms in wind wave models with explicit wave breaking prediction. Part I: Model framework and validation against field data. Ocean Modell., 33, 177189.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., Babanin A. V. , and Young I. R. , 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30, 31453160.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., Gemmrich J. R. , and Farmer D. M. , 2002: Multi-scale measurements of ocean wave breaking probability. J. Phys. Oceanogr., 32, 33643375.

    • Search Google Scholar
    • Export Citation
  • Battjes, J. A., and van Vledder G. P. , 1984: Verification of Kimura’s theory for wave group statistics. Proc. of the 19th Int. Conf. Coastal Engineering, Houston, TX, ASCE, 642–648.

  • Booij, N., Ris R. C. , and Holthuijsen L. H. , 1999: A third-generation wave model for coastal regions 1. Model description and validation. J. Geophys. Res., 104 (C4), 76497666.

    • Search Google Scholar
    • Export Citation
  • CERC, 1977: Shore protection manual. U.S. Army Coastal Research Center, Vols. 1–3.

  • Chen, G., and Belcher S. E. , 2000: Effects of long waves on wind-generated waves. J. Phys. Oceanogr., 30, 22462256.

  • Donelan, M. A., 1998: Air-water exchange processes. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Coastal and Estuarine Studies, Vol. 54, Amer. Geophys. Union, 19–36.

  • Donelan, M. A., Hamilton J. , and Hui W. H. , 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc., A315, 509562.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Babanin A. V. , Young I. R. , Banner M. L. , and McCormick C. , 2005: Wave follower field measurements of the wind input spectral function. Part I: Measurements and calibrations. J. Atmos. Oceanic Technol., 22, 799813.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Babanin A. V. , Young I. R. , and Banner M. L. , 2006: Wave follower field measurements of the wind input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36, 16721688.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Haus B. K. , Plant W. J. , and Troianowski O. , 2010: Modulation of short wind waves by long waves. J. Geophys. Res., 115, C10003, doi:10.1029/2009JC005794.

    • Search Google Scholar
    • Export Citation
  • Ewans, K. C., and Kibblewhite A. C. , 1990: An examination of fetch-limited wave growth off the west coast of New Zealand by a comparison with JONSWAP results. J. Phys. Oceanogr., 20, 12781296.

    • Search Google Scholar
    • Export Citation
  • Filipot, J.-F., Ardhuin F. , and Babanin A. V. , 2010: A unified deep-to-shallow water wave-breaking probability parameterization. J. Geophys. Res., 115, C04022, doi:10.1029/2009JC005448.

    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., 1981: Measurements of a saturation range in ocean wave spectra. J. Geophys. Res., 86 (C9), 80758084.

  • Hasselmann, K., 1974: On the spectral dissipation of ocean waves due to white capping. Bound.-Layer Meteor., 6, 107127.

  • Hasselmann, S., Hasselmann K. , Allender J. H. , and Barnett T. P. , 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, 13781391.

    • Search Google Scholar
    • Export Citation
  • Hsu, C. T., Hsu E. Y. , and Street R. L. , 1981: On the structure of turbulent flow over a progressive water wave: Theory and experiment in a transformed, wave-following co-ordinate system. J. Fluid Mech., 105, 87117.

    • Search Google Scholar
    • Export Citation
  • Hsu, C. T., Wu H. W. , Hsu E. Y. , and Street R. L. , 1982: Momentum and energy transfer in wind generation of waves. J. Phys. Oceanogr., 12, 929951.

    • Search Google Scholar
    • Export Citation
  • Hurdle, D. P., and van Vledder G. Ph. , 2004: Improved spectral wave modeling of white-capping dissipation in swell sea systems. Proc. 23rd Int. Conf. on Offshore Mechanics and Arctic Engineering, Vancouver, BC, Canada, ASME, 539–544.

  • Hwang, P. A., 2011: A note on the ocean surface roughness spectrum. J. Atmos. Oceanic Technol., 28, 436443.

  • Hwang, P. A., and Wang D. W. , 2001: Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum. J. Phys. Oceanogr., 31, 13461360.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr., 19, 745754.

  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., Mitchell D. A. , Wang D. W. , and Teague W. J. , 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709.

    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., and Calkoen C. J. , 1992: Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22, 13891405.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., Hasselmann S. , and Hasselmann K. , 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and Stewart R. W. , 1960: Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech., 8, 564585.

    • Search Google Scholar
    • Export Citation
  • Manasseh, R., Babanin A. V. , Forbes C. , Rickards K. , Bobevski I. , and Ooi A. , 2006: Passive acoustic determination of wave-breaking events and their severity across the spectrum. J. Atmos. Oceanic Technol., 23, 599618.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185204.

  • Moskowitz, L., 1964: Estimates of the power spectrums for fully developed seas for wind speeds of 20 to 40 knots. J. Geophys. Res., 69 (24), 51615179.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1961: A note on the turbulence generated by gravity waves. J. Geophys. Res., 66 (9), 28892893.

  • Phillips, O. M., 1984: On the response of short ocean wave components at a fixed number to ocean current variations. J. Fluid Mech., 14, 14251433.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., and Banner M. L. , 1974: Wave breaking in the presence of wind drift and swell. J. Fluid Mech., 66, 625640.

  • Pierson, W. J., and Moskowitz L. , 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69 (24), 51815190.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Vickery P. J. , and Reinhold T. A. , 2003: Reduced drag coefficient for high speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., Hwang P. A. , and Wang D. W. , 2003: Investigation of wave growth and decay in the SWAN model: Three regional-scale applications. J. Phys. Oceanogr., 33, 366389.

    • Search Google Scholar
    • Export Citation
  • Sanders, J. W., 1976: A growth-stage scaling model for the wind-driven sea. Dtsch. Hydrogr. Z., 29, 136161.

  • Snyder, R. L., Dobson F. W. , Elliot J. A. , and Long R. B. , 1981: A field study of wind generation of ocean waves. J. Fluid Mech., 102, 159.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. W., 1961: The wave drag of wind over water. J. Fluid Mech., 10, 189194.

  • SWAN Team, 2010: SWAN scientific and technical documentation. SWAN cycle III version 40.81, Delft University of Technology, 118 pp. [Available online at http://www.swan.tudelft.nl.]

  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III Version 3.14. NCEP Tech. Note, 220 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.]

  • Tolman, H. L., 1991: A third-generation model for wind-waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782797.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and Chalikov D. , 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518.

  • Tsagareli, K. N., 2009: Numerical investigation of wind input and spectral dissipation in evolution of wind waves. Ph.D. thesis, University of Adelaide, 217 pp.

  • Tsagareli, K. N., Babanin A. V. , Walker D. J. , and Young I. R. , 2010: Numerical investigation of spectral evolution of wind waves. Part I: Wind input source function. J. Phys. Oceanogr., 40, 656666.

    • Search Google Scholar
    • Export Citation
  • Unna, P. J. H., 1941: White horses. Nature, 148, 226227.

  • van der Westhuysen, A. J., 2007: Advances in the spectral modeling of wind waves in the Nearshore. Ph.D. thesis. Delft University of Technology, 206 pp.

  • van der Westhuysen, A. J., Zijlema M. , and Battjes J. A. , 2007: Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Eng., 54, 151170.

    • Search Google Scholar
    • Export Citation
  • van Vledder, G. P., 2002: A subroutine version of the Webb/Resio/Tracy method for the computation of nonlinear quadruplet wave-wave interactions in deep and shallow water. Alkyon Rep. 151b, 55 pp.

  • van Vledder, G. P., 2006: The WRT method for computation of non-linear four-wave interactions in discrete spectral wave models. Coastal Eng., 53, 223242.

    • Search Google Scholar
    • Export Citation
  • van Vledder, G. P., and Hurdle D. P. , 2002: Performance of formulations for whitecapping in wave prediction models. Proc. Int. Conf. on Ocean, Offshore and Arctic Eng. (OMAE) 2002, Oslo, Norway, ASME, 155–163.

  • Violante-Carvalho, N., Ocampo-Torres F. J. , and Robinson I. S. , 2004: Buoy observations of the influence of swell on wind waves in the open ocean. Appl. Ocean Res., 26, 4960.

    • Search Google Scholar
    • Export Citation
  • WAMDI Group, 1988: The WAM model—A third-generation ocean wave prediction model. J. Phys. Oceanogr., 18, 17751810.

  • The WISE Group, 2007: Wave modelling—The state of the art. Prog. Oceanogr., 75, 603674.

  • Wu, J., 1982: Wind stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87 (C12), 97049706.

  • Young, I. R., 1999: Wind Generated Ocean Waves. Elsevier, 288 pp.

  • Young, I. R., and Babanin A. V. , 2006: Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. J. Phys. Oceanogr., 36, 376394.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1841 524 89
PDF Downloads 1478 328 31