• All Sensor, Inc., 2011: Millivolt output pressure sensors. Datasheet Rev. C, 4 pp. [Available online at http://www.allsensors.com/datasheets/DS-0091-Rev-C1.pdf.]

  • Antier, K., , Le Pichon A. , , Vergniolle S. , , Zielinski C. , , and Lardy M. , 2007: Multiyear validation of the NRL-G2S wind fields using infrasound from Yasur. J. Geophys. Res., 112, D23110, doi:10.1029/2007JD008462.

    • Search Google Scholar
    • Export Citation
  • APS Dynamics, 2011: APS 300 portable shaker-amplifier. Datasheet, Rev. April 2011, 2 pp. [Available online at http://www.apsdynamics.com/images/stories/Prospekte/APS_Shaker/APS_300/APS_300_Data_Sheet_en.pdf.]

  • Arechiga, R. O., , Johnson J. B. , , Edens H. E. , , Thomas R. J. , , and Rison W. , 2010: Acoustic localization of triggered lightning. J. Geophys. Res., 116, D09103, doi:10.1029/2010JD015248.

    • Search Google Scholar
    • Export Citation
  • Arrowsmith, S. J., , Johnson J. B. , , Drob D. P. , , and Hedlin M. A. H. , 2010: The seismoacoustic wavefield: A new paradigm in studying geophysical phenomena. Rev. Geophys., 48, RG4003, doi:10.1029/2010RG000335.

    • Search Google Scholar
    • Export Citation
  • Bae, B., , Flachsbart B. R. , , Park K. , , and Shannon M. A. , 2004: Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio. J. Micromech. Microeng., 14, 1597, doi:10.1088/0960-1317/14/12/001.

    • Search Google Scholar
    • Export Citation
  • Barlian, A., , Park W. , , Mallon J. Jr., , Rastegar A. , , and Pruitt B. , 2009: Review: Semiconductor piezoresistance for microsystems. Proc. IEEE, 97, 513552.

    • Search Google Scholar
    • Export Citation
  • Bedard, A. J., , and Georges T. M. , 2000: Atmospheric infrasound. Phys. Today, 53, 32.

  • Bowman, J. R., , Baker G. E. , , and Bahavar M. , 2005: Ambient infrasound noise. Geophys. Res. Lett., 32, L09803, doi:10.1029/2005GL022486.

  • CEA/DAM, 2009: MB2000 and MB2005 microbarometers. [Available online at http://www-dase.cea.fr/public/dossiers_thematiques/microbarometres/description_en.html.]

  • Chaparral Physics, 2011: Operation manual for the Model 50A infrasound sensor. Operation manual, Rev. May 2010, 17 pp. [Available online at http://www.gi.alaska.edu/files/Model%2050A%20Manual%20beta.pdf.]

  • Geotech Instruments, 2011: The Smart Series. Datasheet Rev. August 2010. [Available online at http://www.geoinstr.com/ds-smart24.pdf.]

  • Goto, A., , and Johnson J. B. , 2011: Monotonic infrasound and Helmholtz resonance at Volcan Villarrica (Chile). Geophys. Res. Lett., 38, L06301, doi:10.1029/2011GL046858.

    • Search Google Scholar
    • Export Citation
  • GRAS Sound and Vibration, 2008: Low-frequency calibrator type 42AE. Datasheet, Rev. March 2008. [Available online at http://www.grasinfo.dk/documents/pd_42AE_ver_19_03_2008.PDF/.]

  • Hedlin, M. A. H., , and Raspet R. , 2003: Infrasonic wind-noise reduction by barriers and spatial filters. J. Acoust. Soc. Amer., 114, 13791386.

    • Search Google Scholar
    • Export Citation
  • Jiang, B., , Yang K. , , and Wang J. , 2010: Design of the optical fiber MEMS infrasound sensor. Proc. 2010 Int. Conf. Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, IEEE Computer Society, 1049–1051.

  • Johnson, J. B., , Aster R. C. , , Ruiz M. C. , , Malone S. D. , , McChesney P. J. , , Lees J. M. , , and Kyle P. R. , 2003: Interpretation and utility of infrasonic records from erupting volcanoes. J. Volcanol. Geotherm. Res., 121, 1563.

    • Search Google Scholar
    • Export Citation
  • Jones, R., , and Forbes S. , 1962: A microbarograph. J. Sci. Instrum., 39, 420427.

  • Keefe, D. H., 1984: Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions. J. Acoust. Soc. Amer., 75, 5862.

    • Search Google Scholar
    • Export Citation
  • Ko, W. H., 2007: Trends and frontiers of MEMS. Sens. Actuators A, 136, 6267.

  • Kromer, R. P., , and McDonald T. S. , 2000: Infrasound sensor models and evaluation. Proc. 22nd Annual DoD/DOE Seismic Research Symp.: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), New Orleans, LA, Department of Defense and Department of Energy. [Available online at http://handle.dtic.mil/100.2/ADA523399.]

  • Kromer, R. P., , Hart D. M. , , and Harris J. M. , 2007: Test definitions for the evaluation of infrasound sensors. Sandia National Laboratories Tech. Rep. SAND2007-5038, 11 pp. [Available online at http://prod.sandia.gov/techlib/access-control.cgi/2007/075038.pdf.]

  • Le Pichon, A., , Blanc E. , , and Drob D. , 2005: Probing high-altitude winds using infrasound. J. Geophys. Res., 110, D20104, doi:10.1029/2005JD006020.

    • Search Google Scholar
    • Export Citation
  • Linear Technology, 2011: LT1021—Precision Reference. Datasheet, Rev. C. [Available online at http://cds.linear.com/docs/Datasheet/1021fc.pdf.]

  • Marcillo, O., , and Johnson J. B. , 2010: Tracking near-surface atmospheric conditions using an infrasound network. J. Acoust. Soc. Amer., 128, EL14EL19.

    • Search Google Scholar
    • Export Citation
  • Mentink, J. H., , and Evers L. G. , 2011: Frequency response and design parameters for differential microbarometers. J. Acoust. Soc. Amer., 130, 3341.

    • Search Google Scholar
    • Export Citation
  • Merchant, J., , and Hart D. M. , 2011: Component evaluation testing and analysis algorithms. Sandia National Laboratory SAND2011-8265, 136 pp. [Available online at http://prod.sandia.gov/techlib/access-control.cgi/2011/118265.pdf.]

  • Mutschlecner, J. P., , and Whitaker R. W. , 1997: The design and operation of infrasonic microphones. Los Alamos National Laboratory Tech. Rep. LA-13257, 27 pp. [Available online at http://www.osti.gov/bridge/servlets/purl/481856-QT6CGV/webviewable/481856.pdf.]

  • Richiardone, R., 1993: The transfer function of a differential microbarometer. J. Atmos. Oceanic Technol., 10, 624628.

  • Ripepe, M., , Marchetti E. , , and Ulivieri G. , 2007: Infrasonic monitoring at Stromboli Volcano during the 2003 effusive eruption: Insights on the explosive and degassing process of an open conduit system. J. Geophys. Res., 112, B09207, doi:10.1029/2006JB004613.

    • Search Google Scholar
    • Export Citation
  • Vergniolle, S., , Boichu M. , , and Caplan-Auerbach J. , 2004: Acoustic measurements of the 1999 basaltic eruption of Shishaldin Volcano, Alaska: 1. Origin of Strombolian activity. J. Volcanol. Geotherm. Res., 137, 109134.

    • Search Google Scholar
    • Export Citation
  • Zuckerwar, A. J., , Kuhn T. R. , , and Serbyn R. M. , 2003: Background noise in piezoresistive, electret condenser, and ceramic microphones. J. Acoust. Soc. Amer., 113, 31793187.

    • Search Google Scholar
    • Export Citation
  • Zumberge, M. A., , Berger J. , , Hedlin M. A. H. , , Husmann E. , , Nooner S. , , Hilt R. , , and Widmer-Schnidrig R. , 2003: An optical fiber infrasound sensor: A new lower limit on atmospheric pressure noise between 1 and 10 Hz. J. Acoust. Soc. Amer., 113, 2474.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 248 53
PDF Downloads 341 341 68

Implementation, Characterization, and Evaluation of an Inexpensive Low-Power Low-Noise Infrasound Sensor Based on a Micromachined Differential Pressure Transducer and a Mechanical Filter

View More View Less
  • 1 Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico
  • | 2 Sandia National Laboratories, Albuquerque, New Mexico
© Get Permissions
Restricted access

Abstract

The implementation, characterization, and evaluation of a low-cost infrasound sensor developed at the Infrasound Laboratory at the New Mexico Institute of Mining and Technology (Infra-NMT) are described. This sensor is based on a commercial micromachined piezoresistive differential pressure transducer that uses a mechanical high-pass filter to reject low-frequency outband energy. The sensor features a low-noise, 2.02-mPa rms (0.5–2 Hz), 5.47-mPa rms (0.1–20 Hz), or 5.62-mPa rms (0.05–20 Hz), flat response between 0.01 and at least 40 Hz; inband sensitivity of 45.13 ± 0.23 μV Pa−1; and a nominal linear range from −124.5 to +124.5 Pa. Intended for outdoor applications, the influence of thermal changes in the sensor’s response has been minimized by using a thermal compensated pressure transducer powered by an ultralow drift (<5 ppm °C−1) and noise (<4μV from peak to peak) voltage reference. The sensor consumes a minimum of 24 mW and operates with voltages above 8 V while drawing 3 mA of current. The Infra-NMT specifications described above were independently verified using the infrasound test chamber at the Sandia National Laboratories’ (SNL’s) Facility for Acceptance, Calibration, and Testing (FACT), and the following procedures are for comparison calibration against traceable reference stands in voltage and pressure. Because of the intended broad frequency response of this sensor, the testing chamber was configured in a double-reference sensor scheme. A well-characterized microbarometer (with a flat-amplitude response between 0.01 and 8 Hz) and a microphone (with a flat-amplitude response above 8 Hz) were used simultaneously in this double-reference test configuration.

Corresponding author address: Omar Marcillo, Department of Earth and Environmental Science, MSEC 208 801 Leroy Place, Socorro, NM 87801. E-mail: omarcill@ees.nmt.edu

Abstract

The implementation, characterization, and evaluation of a low-cost infrasound sensor developed at the Infrasound Laboratory at the New Mexico Institute of Mining and Technology (Infra-NMT) are described. This sensor is based on a commercial micromachined piezoresistive differential pressure transducer that uses a mechanical high-pass filter to reject low-frequency outband energy. The sensor features a low-noise, 2.02-mPa rms (0.5–2 Hz), 5.47-mPa rms (0.1–20 Hz), or 5.62-mPa rms (0.05–20 Hz), flat response between 0.01 and at least 40 Hz; inband sensitivity of 45.13 ± 0.23 μV Pa−1; and a nominal linear range from −124.5 to +124.5 Pa. Intended for outdoor applications, the influence of thermal changes in the sensor’s response has been minimized by using a thermal compensated pressure transducer powered by an ultralow drift (<5 ppm °C−1) and noise (<4μV from peak to peak) voltage reference. The sensor consumes a minimum of 24 mW and operates with voltages above 8 V while drawing 3 mA of current. The Infra-NMT specifications described above were independently verified using the infrasound test chamber at the Sandia National Laboratories’ (SNL’s) Facility for Acceptance, Calibration, and Testing (FACT), and the following procedures are for comparison calibration against traceable reference stands in voltage and pressure. Because of the intended broad frequency response of this sensor, the testing chamber was configured in a double-reference sensor scheme. A well-characterized microbarometer (with a flat-amplitude response between 0.01 and 8 Hz) and a microphone (with a flat-amplitude response above 8 Hz) were used simultaneously in this double-reference test configuration.

Corresponding author address: Omar Marcillo, Department of Earth and Environmental Science, MSEC 208 801 Leroy Place, Socorro, NM 87801. E-mail: omarcill@ees.nmt.edu
Save