• Anderson, T. L., , Masonis S. J. , , Covert D. S. , , Ahlquist N. C. , , Howell S. G. , , Clarke A. D. , , and McNaughton C. S. , 2003: Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia. J. Geophys. Res., 108, 8647, doi:10.1029/2002JD003247.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., 2006: Ground-truth aerosol lidar observations: Can the Klett solutions obtained from ground and space be equal for the same aerosol case? Appl. Opt., 45, 33673371, doi:10.1364/AO.45.003367.

    • Search Google Scholar
    • Export Citation
  • Baxla, S. P., , Roy A. A. , , Gupta T. , , Tripathi S. N. , , and Bandyopadhyaya R. , 2009: Analysis of diurnal and seasonal variation of submicron outdoor aerosol mass and size distribution in a northern Indian city and its correlation to black carbon. Aerosol Air Qual. Res., 9, 458, doi:10.4209/aaqr.2009.03.0017.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., , Hlavka D. L. , , Welton E. J. , , Flynn C. J. , , Turner D. D. , , Spinhirne J. D. , , Scott V. S. , , and Hwang I. H. , 2002: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431442.

    • Search Google Scholar
    • Export Citation
  • Chinnam, N., , Dey S. , , Tripathi S. N. , , and Sharma M. , 2006: Dust events in Kanpur, northern India: Chemical evidence for source and implications to radiative forcing. Geophys. Res. Lett., 33, L08803, doi:10.1029/2005GL025278.

    • Search Google Scholar
    • Export Citation
  • Dey, S., , and Di Girolamo L. , 2010: A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000–2008) of Multiangle Imaging Spectroradiometer (MISR) data. J. Geophys. Res., 115, D15204, doi:10.1029/2009JD013395.

    • Search Google Scholar
    • Export Citation
  • Dey, S., , Tripathi S. N. , , Singh R. P. , , and Holben B. N. , 2004: Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J. Geophys. Res., 109, D20211, doi:10.1029/2004JD004924.

    • Search Google Scholar
    • Export Citation
  • Dey, S., , Tripathi S. N. , , Singh R. P. , , and Holben B. N. , 2005: Seasonal variability of the aerosol parameters over Kanpur, an urban site in Indo-Gangetic basin. Adv. Space Res., 36, 778782, doi:10.1016/j.asr.2005.06.040.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., , and Hess G. D. , 2005: An overview of the HYSPLIT 4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., , Holben B. N. , , Reid J. S. , , Dubovik O. , , Smirnov A. , , O’Neill N. T. , , Slutsker I. , , and Kinne S. , 1999: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res., 104 (D24), 31 33331 350.

    • Search Google Scholar
    • Export Citation
  • Ganguly, D., , Ginoux P. , , Ramaswamy V. , , Winker D. M. , , Holben B. N. , , and Tripathi S. N. , 2009: Retrieving the composition and concentration of aerosols over the Indo-Gangetic basin using CALIOP and AERONET data. Geophys. Res. Lett., 36, L13806 doi:10.1029/2009GL038315.

    • Search Google Scholar
    • Export Citation
  • Guan, H., , Schmid B. , , Bucholtz A. , , and Bergstrom R. , 2010: Sensitivity of shortwave radiative flux density, forcing, and heating rate to the aerosol vertical profile. J. Geophys. Res., 115, D06209, doi:10.1029/2009JD012907.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Kacenelenbogen, M., and Coauthors, 2011: An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study. Atmos. Chem. Phys., 11, 39814000, doi:10.5194/acp-11-3981-2011.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-W., , Berthier S. , , Raut J.-C. , , Chazette P. , , Dulac F. , , and Yoon S.-C. , 2008: Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys., 8, 37053720, doi:10.5194/acp-8-3705-2008.

    • Search Google Scholar
    • Export Citation
  • Mamouri, R. E., , Amiridis V. , , Papayannis A. , , Giannakaki E. , , Tsaknakis G. , , and Balis D. S. , 2009: Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece. Atmos. Meas. Tech., 2, 513522.

    • Search Google Scholar
    • Export Citation
  • Mielonen, T., , Arola A. , , Komppula M. , , Kukkonen J. , , Koskinen J. , , de Leeuw G. , , and Lehtinen K. E. J. , 2009: Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data. Geophys. Res. Lett., 36, L18804, doi:10.1029/2009GL039609.

    • Search Google Scholar
    • Export Citation
  • Mona, L., and Coauthors, 2009: One year of CNR-IMAA multi-wavelength Raman lidar measurements in coincidence with CALIPSO overpasses: Level 1 products comparison. Atmos. Chem. Phys., 9, 84298468, doi:10.5194/acpd-9-8429-2009.

    • Search Google Scholar
    • Export Citation
  • Omar, A. H., and Coauthors, 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 19942014.

    • Search Google Scholar
    • Export Citation
  • Pappalardo, G., and Coauthors, 2010: EARLINET correlative measurements for CALIPSO: First intercomparison results. J. Geophys. Res., 115, D00H19, doi:10.1029/2009JD012147.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and Coauthors, 2011: Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar. Atmos. Chem. Phys. Discuss., 11, 12951311, doi:10.5194/acp-11-1295-2011.

    • Search Google Scholar
    • Export Citation
  • Schmid, B., and Coauthors, 2006: How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare? J. Geophys. Res., 111, D05S07, doi:10.1029/2005JD005837.

    • Search Google Scholar
    • Export Citation
  • Singh, R. P., , Dey S. , , Tripathi S. N. , , Tare V. , , and Holben B. , 2004: Variability of aerosol parameters over Kanpur, northern India. J. Geophys. Res., 109, D23206, doi:10.1029/2004JD004966.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A., , Holben B. N. , , Eck T. F. , , Dubovik O. , , and Slutsker I. , 2000: Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ., 73, 337349, doi:10.1016/S0034-4257(00)00109-7.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., 1993: Micro pulse lidar. IEEE Trans. Geosci. Remote Sens., 31, 4855, doi:10.1109/36.210443.

  • Tripathi, S. N., , Dey S. , , Tare V. , , and Satheesh S. K. , 2005: Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys. Res. Lett., 32, L08802, doi:10.1029/2005GL022515.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., , Young S. A. , , Winker D. M. , , Powell K. A. , , Omar A. H. , , Liu Z. , , Hu Y. , , and Hostetler C. A. , 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser Radar Techniques for Atmospheric Sensing, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5575), 16–30, doi:10.1117/12.572024.

  • Welton, E. J., , and Campbell J. R. , 2002: Micropulse lidar signals: Uncertainty analysis. J. Atmos. Oceanic Technol., 19, 20892094.

  • Welton, E. J., and Coauthors, 2000: Ground-based lidar measurements of aerosols during ACE2: Instrument description, results, and comparisons with other groundbased and airborne measurements. Tellus, 52B, 636651, doi:10.1034/j.1600-0889.2000.00025.x.

    • Search Google Scholar
    • Export Citation
  • Welton, E. J., , Campbell J. R. , , Spinhirne J. D. , , and Scott V. S. III, 2001: Global monitoring of clouds and aerosols using a network of micropulse lidar systems. Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 4153), 151–158, doi:10.1117/12.417040.

  • Winker, D. M., , Vaughan M. A. , , Omar A. , , Hu Y. , , Powell K. A. , , Liu Z. , , Hunt W. H. , , and Young S. A. , 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 11
PDF Downloads 45 45 11

Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

View More View Less
  • 1 Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
  • | 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October–March. Higher extinction values at altitudes of 2–4 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

Corresponding author address: S. N. Tripathi, Department of Civil Engineering, Indian Institute of Technology, Kanpur, India. E-mail: snt@iitk.ac.in

Abstract

The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October–March. Higher extinction values at altitudes of 2–4 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

Corresponding author address: S. N. Tripathi, Department of Civil Engineering, Indian Institute of Technology, Kanpur, India. E-mail: snt@iitk.ac.in
Save