• Alsdorf, D. E., , Rodriguez E. , , and Lettenmaier D. P. , 2007: Measuring surface water from space. Rev. Geophys., 45, RG2002, doi:10.1029/2006RG000197.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F., , Davis R. , , and Fandry C. , 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res., 23, 559582.

    • Search Google Scholar
    • Export Citation
  • Dibarboure, G., , Pujol M.-I. , , Briol F. , , Le Traon P. Y. , , Larnicol G. , , Picot N. , , Mertz F. , , and Ablain M. , 2011: Jason-2 in DUACS: Updated system description, first tandem results and impact on processing and products. Mar. Geod., 34 (3–4), 214241.

    • Search Google Scholar
    • Export Citation
  • Dibarboure, G., , Labroue S. , , Ablain M. , , Fjørtoft R. , , Mallet A. , , Lambin J. , , and Souyris J. C. , 2012a: Empirical cross-calibration of coherent SWOT errors using external references and the altimetry constellation. IEEE Trans. Geosci. Remote Sens., 50, 23252344.

    • Search Google Scholar
    • Export Citation
  • Dibarboure, G., , Renaudie C. , , Pujol M.-I. , , Labroue S. , , and Picot N. , 2012b: A demonstration of the potential of Cryosat-2 to contribute to mesoscale observation. Adv. Space Res., doi:10.1016/j.asr.2011.07.002, in press.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., , Le Traon P. Y. , , and Reverdin G. , 2000: Global high resolution mapping of ocean circulation from the combination of TOPEX/POSEIDON and ERS-1/2. J. Geophys. Res., 105, 19 47719 498.

    • Search Google Scholar
    • Export Citation
  • Durand, M., , Fu L. , , Lettenmaier D. , , Alsdorf D. , , Rodriguez E. , , and Esteban-Fernandez D. , 2010: The Surface Water and Ocean Topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE, 98, 766779.

    • Search Google Scholar
    • Export Citation
  • Fu, L., , and Rodriguez E. , 2004: High-resolution measurement of ocean surface topography by radar interferometry for oceanographic and geophysical applications. The State of the Planet: Frontiers and Challenges in Geophysics, IUGG Geophys. Monogr., Vol. 19, International Union of Geophysical Union, 209–224

  • Klein, P., , Hua B. L. , , Lapeyre G. , , Capet X. , , LeGentil S. , , and Sasaki H. , 2008: Upper ocean dynamics from high 3-D resolution simulations. J. Phys. Oceanogr., 38, 17481763.

    • Search Google Scholar
    • Export Citation
  • Klein, P., , Isern-Fontanet J. , , Lapeyre G. , , Roullet G. , , Danioux E. , , Chapron B. , , Le Gentil S. , , and Sasaki H. , 2009: Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height. Geophys. Res. Lett., 36, L12603, doi:10.1029/2009GL038359.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., , and Dibarboure G. , 1999: Mesoscale mapping capabilities from multiple altimeter missions. J. Atmos. Oceanic Technol., 16, 12081223.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., , and Dibarboure G. , 2002: Velocity mapping capabilities of present and future altimeter missions: The role of high-frequency signals. J. Atmos. Oceanic Technol., 19, 20772087.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., , Nadal F. , , and Ducet N. , 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522533.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., , Dibarboure G. , , and Ducet N. , 2001: Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions. J. Atmos. Oceanic Technol., 18, 12771288.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., , Faugère Y. , , Hernandez F. , , Dorandeu J. , , Mertz F. , , and Ablain M. , 2003: Can we merge GEOSAT Follow-On with TOPEX/POSEIDON and ERS-2 for an improved description of the ocean circulation? J. Atmos. Oceanic Technol., 20, 889895.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., , Klein P. , , Hua B. L. , , and Dibarboure G. , 2008: Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory? J. Phys. Oceanogr., 38, 11371142.

    • Search Google Scholar
    • Export Citation
  • Ollivier, A., 2006: Nouvelle approche pour l’extraction de paramètres géophysiques des mesures en altimétrie radar (New approaches for the extraction of geophysical parameters from radar-altimetry measurements). Ph.D. thesis, INPG, 192 pp. [Available online at http://tel.archives-ouvertes.fr/docs/00/20/44/75/PDF/ollivier.pdf.]

  • Pascual, A., , Faugère Y. , , Larnicol G. , , and Le Traon P.-Y. , 2006: Improved description of the ocean mesoscale variability by combining four satellites altimeters. Geophys. Res. Lett., 33, L02611, doi:10.1029/2005GL024633.

    • Search Google Scholar
    • Export Citation
  • Pascual, A., , Boone C. , , Larnicol G. , , and Le Traon P.-Y. , 2009: On the quality of real-time altimeter gridded fields: Comparison with in situ data. J. Atmos. Oceanic Technol., 26, 556569.

    • Search Google Scholar
    • Export Citation
  • Pujol, I., , and Larnicol G. , 2005: Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. J. Mar. Syst., 58 (3–4), 121142.

    • Search Google Scholar
    • Export Citation
  • Rodríguez, E., 2010: The Surface Water and Ocean Topography (SWOT) mission. Proc. of the Ocean Surface Topography Science Team (OSTST) Meeting, Lisbon, Portugal, AVISO, 61 pp. [Available online at http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2010/oral/22_Friday/afternoon/Rodriguez.pdf.]

  • Schlax, M. G., , and Chelton D. B. , 1992: Frequency domain diagnostics for linear smoothers. J. Amer. Stat. Assoc., 87, 10701081.

  • Smith, W. H. F., , and Scharroo R. , 2009: Mesoscale ocean dynamics observed by satellite altimeters in non-repeat orbits. Geophys. Res. Lett., 36, L06601, doi:10.1029/2008GL036530.

    • Search Google Scholar
    • Export Citation
  • Tai, C. K., 2006: Aliasing of sea level sampled by a single exact-repeat altimetric satellite or a coordinated constellation of satellites: Analytic aliasing formulas. J. Atmos. Oceanic Technol., 23, 252267.

    • Search Google Scholar
    • Export Citation
  • Thibaut, P., , Poisson J. C. , , Ollivier A. , , Bronner E. , , and Picot N. , 2009a: Singular value decomposition applied on altimeter waveforms. Proc. Ocean Surface Topography Science Team (OSTST) Meeting, Seattle, WA, AVISO, 12 pp. [Available online at http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2009/oral/Thibaut_SVD2.pdf.]

  • Thibaut, P., , Poisson J. C. , , Tran N. , , Bronner E. , , and Picot N. , 2009b: Jason-2 instrumental and processing status. Proc. Ocean Surface Topography Science Team (OSTST) Meeting, Seattle, WA, AVISO, 17 pp. [Available online at http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2009/oral/Thibaut_status.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 6
PDF Downloads 46 46 5

Using High-Resolution Altimetry to Observe Mesoscale Signals

View More View Less
  • 1 CLS, Toulouse, France
  • | 2 IFREMER, Brest, France
© Get Permissions
Restricted access

Abstract

An Ocean System Simulation Experiment is used to quantify the observing capability of the Surface Water and Ocean Topography (SWOT) mission and its contribution to higher-quality reconstructed sea level anomaly (SLA) fields using optimal interpolation. The paper focuses on the potential of SWOT for mesoscale observation (wavelengths larger than 100 km and time periods larger than 10 days) and its ability to replace or complement altimetry for classical mesoscale applications. For mesoscale variability, the wide swath from SWOT provides an unprecedented sampling capability. SWOT alone would enable the regional surface signal reconstruction as precisely as a four-altimeter constellation would, in regions where temporal sampling is optimum. For some specifics latitudes, where swath sampling is degraded, SWOT capabilities are reduced and show performances equivalent to the historical two-altimeter constellation. In this case, merging SWOT with the two-altimeter constellation stabilizes the global sampling and fully compensates the swath time sampling limitations. Benefits of SWOT measurement are more important within the swath. It would allow a precise local reconstruction of mesoscale structures. Errors of surface signal reconstruction within the swath represent less than 1% (SLA) to 5% (geostrophic velocities reconstruction) of the signal variance in a pessimistic roll error reduction. The errors are slightly reduced by merging swath measurements with the conventional nadir measurements.

Corresponding author address: M.-I. Pujol, CLS-DOS, 8-10 rue Hermes, Parc Technologique du canal, 31520 Ramonville Saint-Agne, France. E-mail: mpujol@cls.fr

Abstract

An Ocean System Simulation Experiment is used to quantify the observing capability of the Surface Water and Ocean Topography (SWOT) mission and its contribution to higher-quality reconstructed sea level anomaly (SLA) fields using optimal interpolation. The paper focuses on the potential of SWOT for mesoscale observation (wavelengths larger than 100 km and time periods larger than 10 days) and its ability to replace or complement altimetry for classical mesoscale applications. For mesoscale variability, the wide swath from SWOT provides an unprecedented sampling capability. SWOT alone would enable the regional surface signal reconstruction as precisely as a four-altimeter constellation would, in regions where temporal sampling is optimum. For some specifics latitudes, where swath sampling is degraded, SWOT capabilities are reduced and show performances equivalent to the historical two-altimeter constellation. In this case, merging SWOT with the two-altimeter constellation stabilizes the global sampling and fully compensates the swath time sampling limitations. Benefits of SWOT measurement are more important within the swath. It would allow a precise local reconstruction of mesoscale structures. Errors of surface signal reconstruction within the swath represent less than 1% (SLA) to 5% (geostrophic velocities reconstruction) of the signal variance in a pessimistic roll error reduction. The errors are slightly reduced by merging swath measurements with the conventional nadir measurements.

Corresponding author address: M.-I. Pujol, CLS-DOS, 8-10 rue Hermes, Parc Technologique du canal, 31520 Ramonville Saint-Agne, France. E-mail: mpujol@cls.fr
Save