• Betts, A. K., 1984: Boundary layer thermodynamics of a high plains severe storm. Mon. Wea. Rev., 112, 21992211.

  • Betts, A. K., and Dugan F. J. , 1973: Empirical formula for saturation pseudoadiabats and saturation equivalent potential temperature. J. Appl. Meteor., 12, 731732.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Brandes, E. A., 1984: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112, 10331052.

  • Brandes, E. A., Zhang G. , and Sun J. , 2006: On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics. J. Appl. Meteor. Climatol., 45, 259268.

    • Search Google Scholar
    • Export Citation
  • Buban, M. S., Ziegler C. L. , Rasmussen E. N. , and Richardson Y. P. , 2007: The dryline on 22 May 2002 during IHOP: Ground-radar and in situ data analyses of the dryline and boundary layer evolution. Mon. Wea. Rev., 135, 24732505.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., Saffle R. E. , and Wilson J. W. , 1998: An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting, 13, 253262.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., Bleck R. , and Morris D. A. , 1972: Hail growth by stochastic collection in a cumulus model. J. Atmos. Sci., 29, 23812403.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1974: Discussion of measurements inside high-speed thunderstorm updrafts. J. Appl. Meteor., 13, 710717.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • Eisenhauer, J. G., 2003: Regression through the origin. Teach. Stat., 25, 7680.

  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280.

  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587606.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and Wicker L. J. , 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943958.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., Straka J. M. , and Rasmussen E. N. , 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916.

    • Search Google Scholar
    • Export Citation
  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440.

  • Hane, C., Wilhelmson R. B. , and Gal-Chen T. , 1981: Retrieval of thermodynamic variables within deep convective clouds: Experiments in three dimensions. Mon. Wea. Rev., 109, 564576.

    • Search Google Scholar
    • Export Citation
  • Hane, C., Ziegler C. , and Ray P. , 1988: Use of velocity fields from Doppler radars to retrieve other variables in thunderstorms. Thunderstorms: A Social, Scientific, and Technological Documentary, E. Kessler, Ed., University of Oklahoma Press, 215–234.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369402.

  • Klemp, J. B., and Wilhelmson R. B. , 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L., Zrnic D. S. , Straka J. M. , and Ryzhkov A. V. , 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41, 11791194.

    • Search Google Scholar
    • Export Citation
  • Majcen, M., Markowski P. , Richardson Y. , Dowell D. , and Wurman J. , 2008: Multipass objective analysis of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858.

    • Search Google Scholar
    • Export Citation
  • Marecal, V., Hauser D. , and Roux F. , 1993: The 12/13 January 1988 narrow cold-frontal rainband observed during MFDP/FRONTS 87. Part II: Microphysics. J. Atmos. Sci., 50, 975998.

    • Search Google Scholar
    • Export Citation
  • Neter, J., and Wasserman W. , 1974: Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Designs. Irwin, Inc., 842 pp.

  • Richardson, Y. P., Ziegler C. L. , Buban M. , Marquis J. N. , and Wurman J. M. , 2009: Impact of dryline misocyclones on convection initiation on 19 June 2002 during IHOP. Extended Abstracts, Fifth European Conf. on Severe Storms, Landshut, Germany, ESSL, 277–278. [Available online at http://www.essl.org/ECSS/2009/preprints/O09-09-richardson.pdf.]

  • Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and the thermodynamic equation. Mon. Wea. Rev., 113, 21422157.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and Hobbs P. V. , 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972.

    • Search Google Scholar
    • Export Citation
  • Saffle, R. E., Istok M. J. , and Cate G. , 2006: NEXRAD product improvement—Expanding science horizons. Preprints, 22nd Conf. on Interactive Information Processing Systems, Atlanta, GA, Amer. Meteor. Soc., 9.1. [Available online at https://ams.confex.com/ams/Annual2006/webprogram/Paper104223.html.]

  • Schuur, T. J., Ryzhkov A. V. , Zrnic D. S. , and Schönhuber M. , 2001: Drop size distributions measured by a 2D video distrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034.

    • Search Google Scholar
    • Export Citation
  • Schwarz, C. M., and Burgess D. W. , 2010: Verification of the Origins of Rotation in Tornadoes Experiment, Part 2 (VORTEX2): Data from the NOAA (NSSL) X-band dual-polarized radar. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P6.1. [Available online at https://ams.confex.com/ams/25SLS/webprogram/Paper176159.html.]

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Soong, S.-T., and Ogura Y. , 1973: A comparison between axisymmetric and slab-symmetric cumulus cloud models. J. Atmos. Sci., 30, 879893.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and Mansell E. R. , 2005: A bulk microphysical parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44, 445466.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., Zrnic D. S. , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data. J. Appl. Meteor., 39, 13411372.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S., 2012: Evaluation of dual-polarization QPE: Initial results for spring and summer 2012. WSR-88D Radar Operations Center Final Rep. NSSL-ROC MOU Task1.1, 48 pp.

  • Wilhelmson, R. B., and Ogura Y. , 1972: The pressure perturbation and the numerical modeling of a cloud. J. Atmos. Sci., 29, 12951307.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., Vivekanandan J. , and Brandes E. A. , 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1984: Retrieval of thermal and microphysical variables in observed convective storms. Ph.D. dissertation, University of Oklahoma, 196 pp.

  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1988: Retrieval of thermal and microphysical variables in observed convective storms. Part II: Sensitivity of cloud processes to variation of the microphysical parameterization. J. Atmos. Sci., 45, 10721090.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 2013: A diabatic Lagrangian technique for the analysis of convective storms. Part II: Application to a radar-observed storm. J. Atmos. Oceanic Technol., 30, 22662280.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., MacGorman D. R. , Dye J. E. , and Ray P. S. , 1991: A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12 83312 855.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., Rasmussen E. , Buban M. , Richardson Y. , Miller L. J. , and Rabin R. , 2007: A Lagrangian objective analysis technique for assimilating in situ observations with multiple-radar-derived airflow. Mon. Wea. Rev., 135, 24172442.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., Mansell E. , Straka J. , MacGorman D. , and Burgess D. , 2010: The impact of spatial variations of low-level stability on the life cycle of a simulated supercell storm. Mon. Wea. Rev., 138, 17381766.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., Ryzhkov A. , Straka J. , Liu Y. , and Vivekanandan J. , 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 9 9 9

A Diabatic Lagrangian Technique for the Analysis of Convective Storms. Part I: Description and Validation via an Observing System Simulation Experiment

View More View Less
  • 1 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

A diabatic Lagrangian analysis (DLA) technique for deriving potential temperature, water vapor and cloud water mixing ratios, and virtual buoyancy from three-dimensional time-dependent Doppler radar wind and reflectivity fields in storms is presented. The DLA method proceeds from heat and water substance conservation along discrete air trajectories via microphysical diabatic heating/cooling and simple damping and surface flux parameterizations in a parcel-following ground-relative reference frame to thermodynamic fields on a regular grid of trajectory endpoints at a common analysis time. Rain and graupel precipitation size distributions are parameterized from observed reflectivity at discrete Lagrangian points to simplify the cloud model–based microphysically driven heating and cooling rate calculations. The DLA approximates the precipitation size distributions from reflectivity assuming conventional inverse exponential size distributions and prescribed input intercept parameter values based on the output of a mature simulated storm. The DLA is demonstrated via an observing system simulation experiment (OSSE), and its analysis compares favorably with the known output buoyancy and water substance fields in the simulated storm case. The DLA-analyzed thermal–solenoidal horizontal vorticity tendency is of comparable magnitude to the corresponding modeled solenoidal vorticity tendency. A test application of the DLA to a radar-observed storm is presented in a companion paper (Part II).

Corresponding author address: Dr. Conrad L. Ziegler, National Severe Storms Laboratory, Forecast Research and Development Division, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: conrad.ziegler@noaa.gov

Abstract

A diabatic Lagrangian analysis (DLA) technique for deriving potential temperature, water vapor and cloud water mixing ratios, and virtual buoyancy from three-dimensional time-dependent Doppler radar wind and reflectivity fields in storms is presented. The DLA method proceeds from heat and water substance conservation along discrete air trajectories via microphysical diabatic heating/cooling and simple damping and surface flux parameterizations in a parcel-following ground-relative reference frame to thermodynamic fields on a regular grid of trajectory endpoints at a common analysis time. Rain and graupel precipitation size distributions are parameterized from observed reflectivity at discrete Lagrangian points to simplify the cloud model–based microphysically driven heating and cooling rate calculations. The DLA approximates the precipitation size distributions from reflectivity assuming conventional inverse exponential size distributions and prescribed input intercept parameter values based on the output of a mature simulated storm. The DLA is demonstrated via an observing system simulation experiment (OSSE), and its analysis compares favorably with the known output buoyancy and water substance fields in the simulated storm case. The DLA-analyzed thermal–solenoidal horizontal vorticity tendency is of comparable magnitude to the corresponding modeled solenoidal vorticity tendency. A test application of the DLA to a radar-observed storm is presented in a companion paper (Part II).

Corresponding author address: Dr. Conrad L. Ziegler, National Severe Storms Laboratory, Forecast Research and Development Division, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: conrad.ziegler@noaa.gov
Save