• Braun, S. A., and Tao W.-K. , 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Sun W.-Y. , 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118.

  • Cohard, J.-M., and Pinty J.-P. , 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 18151842.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., Hong S.-Y. , and Lim K.-S. , 2008: A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Meteor. Soc. Japan, 86A, 3344.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., and Kummerow C. D. , 2008: Toward a fully parametric retrieval of the nonraining parameters over the global oceans. J. Appl. Meteor. Climatol., 47, 15991618.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and Olson W. S. , 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45, 416433.

    • Search Google Scholar
    • Export Citation
  • Han, M., Scott A. B. , Olson W. S. , Persson P. O. G. , and Bao J.-W. , 2010: Application of TRMM PR and TMI measurements to assess cloud microphysical schemes in the MM5 for a winter storm. J. Appl. Meteor. Climatol., 49, 11291148.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Lim J.-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Dudhia J. , and Chen S.-H. , 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Lim K.-S. S. , Kim J.-H. , and Lim J.-O. J. , 2009: Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteor. Climatol., 48, 6176.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Lim K.-S. S. , Lee Y.-H. , Ha J.-C. , Kim H.-W. , Ham S.-J. , and Dudhia J. , 2010: Evaluation of the WRF double-moment six-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, doi:10.1155/2010/707253.

    • Search Google Scholar
    • Export Citation
  • Kain, J., and Fritsch M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Khairoutdinov, M., and Kogan Y. , 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Olson W. S. , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130.

    • Search Google Scholar
    • Export Citation
  • Lang, S., Tao W.-K. , Cifelli R. , Olson W. , Halverson J. , Rutledge S. , and Simpson J. , 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and Hong S.-Y. , 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and Kummerow C. , 2005: Combined radar and radiometer analysis of precipitation profiles for a parametric retrieval algorithm. J. Atmos. Oceanic Technol., 22, 909929.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., Tao W.-K. , Simpson J. , Penc R. , and Soong S.-T. , 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 9851004.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Pinto J. O. , 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 36833704.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., Curry J. A. , and Khvorostyanov V. I. , 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., Kummerow C. D. , Heymsfield G. M. , and Giglio L. , 1996: A method for combined passive–active microwave retrievals of cloud and precipitation profiles. J. Appl. Meteor., 35, 17631789.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices. Meteor. Atmos. Phys., 54, 7999.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and Hobbs P. V. , 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cloud-frontal rainbands. J. Atmos. Sci., 41, 29492972.

    • Search Google Scholar
    • Export Citation
  • Shin, D.-B., and Kummerow C. , 2003: Parametric rainfall retrieval algorithms for passive microwave radiometers. J. Appl. Meteor., 42, 14801496.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., Simpson J. , and McCumber M. , 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235.

  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Viltard, N., Kummerow C. , Olson W. S. , and Hong Y. , 2000: Combined use of radar and radiometer of TRMM to estimate the influence of drop size distribution on rain retrievals. J. Appl. Meteor., 39, 21032114.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., Chang A. T. C. , and Chiu L. S. , 1991: Retrieval of monthly rainfall indices from microwave radiometric measurement using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y. P., and Coauthors, 2007: Use of high-resolution satellite observations to evaluate cloud and precipitation statistics from cloud-resolving model simulations. Part I: South China Sea monsoon experiment. J. Atmos. Sci., 64, 43094329.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

Impacts of A Priori Databases Using Six WRF Microphysics Schemes on Passive Microwave Rainfall Retrievals

View More View Less
  • 1 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • | 2 Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

Physically based rainfall retrievals from passive microwave sensors often make use of cloud-resolving models (CRMs) to build a priori databases of potential rain structures. Each CRM, however, has its own cloud microphysics assumptions. Hence, approximated microphysics may cause uncertainties in the a priori information resulting in inaccurate rainfall estimates. This study first builds a priori databases by combining the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) observations and simulations from the Weather Research and Forecasting (WRF) model with six different cloud microphysics schemes. The microphysics schemes include the Purdue–Lin (LIN), WRF Single-Moment 6 (WSM6), Goddard Cumulus Ensemble (GCE), Thompson (THOM), WRF Double-Moment 6 (WDM6), and Morrison (MORR) schemes. As expected, the characteristics of the a priori databases are inherited from the individual cloud microphysics schemes. There are several distinct differences in the databases. Particularly, excessive graupel and snow exist with the LIN and THOM schemes, while more rainwater is incorporated into the a priori information with WDM6 than with any of the other schemes. Major results show that convective rainfall regions are not well captured by the LIN and THOM schemes-based retrievals. Rainfall distributions and their quantities retrieved from the WSM6 and WDM6 schemes-based estimations, however, show relatively better agreement with the PR observations. Based on the comparisons of the various microphysics schemes in the retrievals, it appears that differences in the a priori databases considerably affect the properties of rainfall estimations.

Corresponding author address: Dong-Bin Shin, Department of Atmospheric Sciences, Yonsei University, 50 Yonsei-ro, Seodeamun-gu, Seoul 120-749, South Korea. E-mail: dbshin@yonsei.ac.kr

Abstract

Physically based rainfall retrievals from passive microwave sensors often make use of cloud-resolving models (CRMs) to build a priori databases of potential rain structures. Each CRM, however, has its own cloud microphysics assumptions. Hence, approximated microphysics may cause uncertainties in the a priori information resulting in inaccurate rainfall estimates. This study first builds a priori databases by combining the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) observations and simulations from the Weather Research and Forecasting (WRF) model with six different cloud microphysics schemes. The microphysics schemes include the Purdue–Lin (LIN), WRF Single-Moment 6 (WSM6), Goddard Cumulus Ensemble (GCE), Thompson (THOM), WRF Double-Moment 6 (WDM6), and Morrison (MORR) schemes. As expected, the characteristics of the a priori databases are inherited from the individual cloud microphysics schemes. There are several distinct differences in the databases. Particularly, excessive graupel and snow exist with the LIN and THOM schemes, while more rainwater is incorporated into the a priori information with WDM6 than with any of the other schemes. Major results show that convective rainfall regions are not well captured by the LIN and THOM schemes-based retrievals. Rainfall distributions and their quantities retrieved from the WSM6 and WDM6 schemes-based estimations, however, show relatively better agreement with the PR observations. Based on the comparisons of the various microphysics schemes in the retrievals, it appears that differences in the a priori databases considerably affect the properties of rainfall estimations.

Corresponding author address: Dong-Bin Shin, Department of Atmospheric Sciences, Yonsei University, 50 Yonsei-ro, Seodeamun-gu, Seoul 120-749, South Korea. E-mail: dbshin@yonsei.ac.kr
Save