• Abreu, D., Chandan D. , Holzworth R. H. , and Strong K. , 2010: A performance assessment of the World Wide Lightning Location Network (WWLLN) via comparison with the Canadian Lightning Detection Network (CLDN). Atmos. Meas. Tech. Discuss., 3, 18611887, doi:10.5194/amtd-3-1861-2010.

    • Search Google Scholar
    • Export Citation
  • Ballarotti, M. G., Saba M. M. F. , and Pinto O. Jr., 2005: High-speed camera observations of negative ground flashes on a millisecond-scale. Geophys. Res. Lett., 32, L23082, doi:10.1029/2005GL023889.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. J., Callaghan G. , Gaffard C. , Nash J. , and Smout R. , 2010: The effect of changes in lightning waveform propagation characteristics on the UK Met Office long range lightning location network (ATDnet). Proc. 21st Int. Lightning Detection Conf., Orlando, FL, Vaisala, 13 pp. [Available online at http://www.vaisala.com/en/events/ildcilmc/Pages/ILDC-2010-Archive.aspx.]

  • Bennett, A. J., Gaffard C. , Nash J. , Callaghan G. , and Atkinson N. C. , 2011: The effect of modal interference on VLF long-range lightning location networks using the waveform correlation technique. J. Atmos. Oceanic Technol., 28, 9931006.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., Cummins K. L. , Kehoe K. E. , and Krider E. P. , 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., and Coauthors, 2000: The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. J. Atmos. Oceanic Technol., 17, 441458.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Murphy M. J. , Bardo E. A. , Hiscox W. L. , Pyle R. B. , and Pifer A. E. , 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 (D8), 90359044.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Cramer J. A. , Biagi C. , Krider E. P. , Jerauld J. , Uman M. A. , and Rakov V. A. , 2006: The U.S. National Lightning Detection Network: Post-upgrade status. Preprints, Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.1. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_105142.htm.]

  • Cummins, K. L., Pifer A. E. , Pezze M. , Rogers T. , Honma N. , and Tatsumi M. , 2011: Improved detection of winter lightning in the Tohoku region of Japan using Vaisala's LS700x technology. Proc. Third Int. Symp. on Winter Lightning, Sapporo, Japan, ISWL, 6 pp.

  • Diendorfer, G., 2010: LLS performance validation using lightning to towers. Proc. 21st Int. Lightning Detection Conf., Orlando, FL, Vaisala, 15 pp. [Available online at http://www.vaisala.com/en/events/ildcilmc/Pages/ILDC-2010-Archive.aspx.]

  • Drüe, C., Hauf T. , Finke U. , Keyn S. , and Kreyer O. , 2007: Comparison of a SAFIR lightning detection network in northern Germany to the operational BLIDS network. J. Geophys. Res., 112, D18114, doi:10.1029/2006JD007680.

    • Search Google Scholar
    • Export Citation
  • Finke, U., 1999: Space–time correlations of lightning distributions. Mon. Wea. Rev., 127, 18501861.

  • Gaffard, C., and Coauthors, 2008: Observing lightning around the globe from the surface. Proc. 20th Int. Lightning Detection Conf., Tucson, AZ, Vaisala, 12 pp. [Available online at http://www.vaisala.com/en/events/ildcilmc/Pages/ILDC-2008-Archive.aspx.]

  • Grant, M. D., Nixon K. J. , and Jandrell I. R. , 2012: Positive polarity: Misclassification between intracloud and cloud-to-ground discharges in the Southern African Lightning Detection Network. Proc. 22nd Int. Lightning Detection Conf., Broomfield, CO, Vaisala, 5 pp. [Available online at http://www.vaisala.com/en/events/ildcilmc/Pages/ILDC-2012-archive.aspx.]

  • Honma, H., Cummins K. L. , Murphy M. J. , Pifer A. E. , and Rogers T. , 2011: Improved lightning locations in the Tokohu region of Japan using propagation and waveform onset corrections. Proc. Third Int. Symp. on Winter Lightning, Sapporo, Japan, ISWL, 6 pp.

  • Jacobson, A. R., Holzworth R. , Harlin J. , Dowden R. , and Lay E. , 2006: Performance assessment of the World Wide Lightning Location Network (WWLLN), using the Los Alamos Sferic Array (LASA) as ground truth. J. Atmos. Oceanic Technol., 23, 10821092.

    • Search Google Scholar
    • Export Citation
  • Jerauld, J., Rakov V. A. , Uman M. A. , Rambo K. J. , Jordan D. M. , Cummins K. L. , and Cramer J. A. , 2005: An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket-triggered lightning. J. Geophys. Res., 110, D19106, doi:10.1029/2005JD005924.

    • Search Google Scholar
    • Export Citation
  • Keogh, S. J., Hibbett E. , Nash J. , and Eyre J. , 2006: The Met Office Arrival Time Difference (ATD) system for thunderstorms detection and lightning location. Forecasting Research Tech. Rep. 488, 22 pp.

  • Kohn, M., Galanti E. , Price C. , Lagouvardos K. , and Kotroni V. , 2011: Nowcasting thunderstorms in the Mediterranean region using lightning data. Atmos. Res., 100, 489502.

    • Search Google Scholar
    • Export Citation
  • Kotroni, V., and Lagouvardos K. , 2008: Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean. J. Geophys. Res., 113, D21118, doi:10.1029/2008JD010605.

    • Search Google Scholar
    • Export Citation
  • Kuk, B. J., Kim H. I. , Ha J. S. , and Lee H. K. , 2011: Intercomparison study of cloud-to-ground lightning flashes observed by KARITLDS and KLDN at South Korea. J. Appl. Meteor. Climatol., 50, 224232.

    • Search Google Scholar
    • Export Citation
  • Lagouvardos, K., Kotroni V. , Betz H.-D. , and Schmidt K. , 2009: A comparison of lightning data provided by ZEUS and LINET networks over western Europe. Nat. Hazards Earth Syst. Sci., 9, 17131717, doi:10.5194/nhess-9-1713-2009.

    • Search Google Scholar
    • Export Citation
  • Lynn, K. J. W., 1977: VLF modal interference over west-east paths. J. Atmos. Terr. Phys., 39, 347357.

  • Nag, A., and Coauthors, 2011: Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J. Geophys. Res., 116, D02123, doi:10.1029/2010JD014929.

    • Search Google Scholar
    • Export Citation
  • Orville, R., Huffines G. , Burrows W. , Holle R. , and Cummins K. , 2002: The North American Lightning Detection Network (NLDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 20982108.

    • Search Google Scholar
    • Export Citation
  • Poelman, D. R., Schulz W. , and Vergeiner C. , 2013: Performance characteristics of three distinct lightning detection networks covering Belgium. J. Atmos. Oceanic Technol., 30, 942951.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., Werner S. , Brundell J. B. , Lay E. H. , Thomson N. R. , Holzworth R. H. , and Dowden R. L. , 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 31973214, doi:10.5194/angeo-24-3197-2006.

    • Search Google Scholar
    • Export Citation
  • Rubinstein, M., 1992: On the estimation of the detection efficiency by comparison of adjacent lightning location systems. Proc. 22nd Int. Conf. on Lightning Protection, Berlin, Germany, ICLP, 5 pp.

  • Schulz, W., Pichler H. , and Diendorfer G. , 2010: Evaluation of 45 negative flashes based on E-field measurements, video data and lightning location data in Austria. Proc. 30th Int. Conf. on Lightning Protection, Cagliari, Italy, ICLP, 1011-1–1011-4.

  • Thomas, R. J., Krehbiel P. R. , Rison W. , Hamlin T. , Boccippio D. J. , Goodman S. J. , and Christian H. J. , 2000: Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma. Geophys. Res. Lett., 27, 17031706, doi:10.1029/1999GL010845.

    • Search Google Scholar
    • Export Citation
  • Wacker, R. and Orville R. , 1999a: Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade: 1. Observations. J. Geophys. Res., 104 (D2), 21512157.

    • Search Google Scholar
    • Export Citation
  • Wacker, R., and Orville R. , 1999b: Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network Upgrade: 2. Theory. J. Geophys. Res., 104 (D2), 21592162.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 1 1 1

Comparing a Regional, Subcontinental, and Long-Range Lightning Location System over the Benelux and France

View More View Less
  • 1 Royal Meteorological Institute, Brussels, Belgium
  • | 2 Météo-France, Toulouse, France
  • | 3 Met Office, Exeter, United Kingdom
  • | 4 Météorage, Pau, France
Restricted access

Abstract

Increasing possibilities for using lightning data—for instance, in monitoring and tracking applications—necessitate proper spatial and temporal mapping of lightning events. It is therefore of importance to assess the capabilities and limitations of a ground-based lightning network of interest to locate electromagnetic signals emitted by lightning discharges. In this paper, data covering two storm seasons, between May and September 2011 and 2012, are used to compare the spatial and temporal lightning observations of three different lightning location systems over an area covering the Benelux and France. The lightning datasets from a regional network employing Surveillance et Alerte Foudre par Interférométrie Radioélectrique (SAFIR) sensors operated by the Royal Meteorological Institute of Belgium (RMIB), a subcontinental network operated by Météorage (MTRG), and the Met Office's long-range Arrival Time Difference network (ATDnet) are considered. It is found that the median location difference among corresponding strokes and flashes between ATDnet and MTRG is 1.9 and 2.8 km, respectively, and increases by a factor of ~3 when comparing ATDnet and/or MTRG to SAFIR. The absolute mean time difference between shared events fluctuates between approximately 25 and 100 μs. Furthermore, lightning data are correlated in terms of relative detection efficiency, quantifying the number of detections that coincide between two different networks. The highest relative values are found among ATDnet and MTRG. In addition, a lower limit of ~25% of ATDnet's flashes are of type inter/intracloud. Finally, it is demonstrated that all three networks are competent in mapping the electrical activity in thunderstorms.

Corresponding author address: Dieter R. Poelman, Royal Meteorological Institute, Ringlaan 3 Avenue Circulaire, B-1180 Brussels, Belgium. E-mail: dieter.poelman@meteo.be

Abstract

Increasing possibilities for using lightning data—for instance, in monitoring and tracking applications—necessitate proper spatial and temporal mapping of lightning events. It is therefore of importance to assess the capabilities and limitations of a ground-based lightning network of interest to locate electromagnetic signals emitted by lightning discharges. In this paper, data covering two storm seasons, between May and September 2011 and 2012, are used to compare the spatial and temporal lightning observations of three different lightning location systems over an area covering the Benelux and France. The lightning datasets from a regional network employing Surveillance et Alerte Foudre par Interférométrie Radioélectrique (SAFIR) sensors operated by the Royal Meteorological Institute of Belgium (RMIB), a subcontinental network operated by Météorage (MTRG), and the Met Office's long-range Arrival Time Difference network (ATDnet) are considered. It is found that the median location difference among corresponding strokes and flashes between ATDnet and MTRG is 1.9 and 2.8 km, respectively, and increases by a factor of ~3 when comparing ATDnet and/or MTRG to SAFIR. The absolute mean time difference between shared events fluctuates between approximately 25 and 100 μs. Furthermore, lightning data are correlated in terms of relative detection efficiency, quantifying the number of detections that coincide between two different networks. The highest relative values are found among ATDnet and MTRG. In addition, a lower limit of ~25% of ATDnet's flashes are of type inter/intracloud. Finally, it is demonstrated that all three networks are competent in mapping the electrical activity in thunderstorms.

Corresponding author address: Dieter R. Poelman, Royal Meteorological Institute, Ringlaan 3 Avenue Circulaire, B-1180 Brussels, Belgium. E-mail: dieter.poelman@meteo.be
Save