• Ackerman S. A., Holz R. E. , Frey R. , Eloranta E. W. , Maddux B. C. , and McGill M. , 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol.,25, 1073–1086.

  • Cadet, B., Giraud V. , Haeffelin M. , Keckhut P. , Rechou A. , and Baldy S. , 2005: Improved retrievals of cirrus cloud optical properties using a combination of lidar methods. Appl. Opt., 44, 17261734.

    • Search Google Scholar
    • Export Citation
  • Chervet, P., and Roblin A. , 2006: High-altitude cloud effects on airborne electro-optical sensor performances. J. Atmos. Oceanic Technol., 23, 15301538.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., Ackerman T. P. , and Mace G. G. , 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impact. J. Geophys. Res., 107, 4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Currey, J.-C., and Coauthors, 2007: Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data management system: Data products catalog. Doc. PC-SCI-503, Release 2.4, NASA Langley Research Center, 81 pp.

  • Davis, S., and Coauthors, 2010: In situ and lidar observations of tropopause subvisible cirrus clouds during TC4. J. Geophys. Res., 115, D00J17, doi:10.1029/2009JD013093.

    • Search Google Scholar
    • Export Citation
  • Dupont, J.-C., 2008: Impact des nuages haute altitude sur le bilan radiatif à la surface de la terre: Quantification expérimentale et analyse. Ph.D. thesis, Ecole Polytechnique, 206 pp.

  • Dupont, J.-C., and Coauthors, 2010: Macrophysical and optical properties of midlatitude cirrus clouds from ground-based lidars and collocated CALIOP observations. J. Geophys. Res., 115, D00H24, doi:10.1029/2009JD011943.

    • Search Google Scholar
    • Export Citation
  • Hobbs, R., Mitchell J. , Bedrick M. A. , Rusk D. J. , and Rose R. L. , 2003: Use of satellite climatology for assessing cloud-free-line-of-sight probabilities. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., P1.1. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56833.htm.]

  • Hunt, W. H., Winker D. M. , Vaughan M. A. , Powell K. A. , Lucker P. L. , and Weimer C. , 2009: CALIPSO lidar description and performance assessment. J. Atmos. Oceanic Technol., 26, 12141228.

    • Search Google Scholar
    • Export Citation
  • Keckhut P., Borchi F. , Bekki S. , Hauchecorne A. , and SiLaouina M. , 2006: Cirrus classification at midlatitude from systematic lidar observations. J. Appl. Meteor. Climatol., 45, 249258.

    • Search Google Scholar
    • Export Citation
  • Liao, X., Rossow W. B. , and Rind D. , 1995: Comparison between SAGE II and ISCCP cloud amounts. J. Geophys. Res., 100, 11211135.

  • Liou, K.-N., Takano Y. , Ou S. C. , Heymsfield A. , and Kreiss W. , 1990: Infrared transmission through cirrus clouds: A radiative model for target detection. Appl. Opt., 29, 18861896.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., Takano Y. , Ou S. C. , and Johnson M. W. , 2000: Laser transmission through thin cirrus clouds. Appl. Opt., 39, 48864894.

  • Liu, Z., and Coauthors, 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Oceanic Technol., 26, 11981213.

    • Search Google Scholar
    • Export Citation
  • Lund, I. A., and Shanklin M. D. , 1972: Photogrammetrically determined cloud-free lines-of-sight through the atmosphere. J. Appl. Meteor., 11, 773782.

    • Search Google Scholar
    • Export Citation
  • Lund, I. A., and Shanklin M. D. , 1973: Universal methods for estimating probabilities of cloud-free lines-of-sight through the atmosphere. J. Appl. Meteor., 12, 2835.

    • Search Google Scholar
    • Export Citation
  • Lund, I. A., Grantham D. D. , and Davis R. E. , 1980: Estimating probabilities of cloud-free fields-of-view from the earth through the atmosphere. J. Appl. Meteor., 19, 452463.

    • Search Google Scholar
    • Export Citation
  • Noël, V., and Haeffelin M. , 2007: Midlatitude cirrus clouds and multiple tropopause from a 2002–2006 climatology over the SIRTA observatory. J. Geophys. Res., 112, D13206, doi:10.1029/2006JD007753.

    • Search Google Scholar
    • Export Citation
  • Ou, S. C., Takano Y. , Liou K. N. , Lefevre R. J. , and Johnson M. W. , 2002: Laser transmission-backscattering through inhomogeneous cirrus clouds. Appl. Opt., 41, 57445754.

    • Search Google Scholar
    • Export Citation
  • Powell, K., and Coauthors, 2011: Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations Data Management System: Data products catalog. Doc. PC-SCI-503, Release 3.4, NASA Langley Research Center, 99 pp. [Available online at http://www-calipso.larc.nasa.gov/products/CALIPSO_DPC_Rev3x4.pdf.]

  • Rogers, R. R., and Coauthors, 2011: Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar. Atmos. Chem. Phys., 11, 12951311, doi:10.5194/acp-11-1295-2011.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Schiffer R. A. , 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc.,80, 2261–2286.

  • Sassen, K., and Cho B. S. , 1992: Subvisual–thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Wang Z. , and Liu D. , 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Scott, N. A., and Coauthors, 1999: Characteristics of the TOVS Pathfinder Path-B Dataset. Bull. Amer. Meteor. Soc., 80, 26792701.

  • Shields, J. E., Burden A. R. , Johnson R. W. , Karr M. E. , and Baker J. G. , 2005: New cloud free line of sight statistics measured with digital whole sky imager. Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5891), 58910M, doi:10.1117/12.615517.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., Rossow W. B. , Chéruy F. , Chédin A. , and Scott N. A. , 1999: Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part I: Evaluation of cloud parameters. J. Climate, 12, 21892213.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., Chédin A. , Rädel G. , Scott N. A. , and Serrar S. , 2006: Cloud properties and their seasonal and diurnal variability from TOVS Paths-B. J. Climate, 19, 55315553.

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., Fu Q. , and Comstock J. , 2011: Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites. J. Geophys. Res., 116, D21203, doi:10.1029/2011JD015970.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., Winker D. M. , and Powell K. A. , 2005: CALIOP Algorithm Theoretical Basis Document. Part 2: Feature detection and layer properties algorithms, CALIOP ATBD PC-SCI-202 Part 2, Release 1.01, 87 pp. [Available online at http://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part2_rev1x01.pdf.]

  • Vaughan, M. A., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., Hunt W. H. , and McGill M. J. , 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., Vaughan M. A. , Omar A. , Hu Y. , Powell K. A. , Liu Z. , Hunt W. H. , and Young S. A. , 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229.

    • Search Google Scholar
    • Export Citation
  • Wood R., and Field P. R. , 2011: The distribution of cloud horizontal sizes. J. Climate,24, 4800–4816.

  • Wylie, D. P., and Menzel W. P. , 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12, 170184.

  • Wylie, D. P., Menzel W. P. , Woolf H. M. , and Strabula K. I. , 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7, 19721986.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., Piironen P. , Wolf W. , and Eloranta E. , 1995: Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths. J. Atmos. Sci., 52, 43274343.

    • Search Google Scholar
    • Export Citation
  • Yorks, J. E., Hlavka D. L. , Vaughan M. A. , McGill M. J. , Hart W. D. , Rodier S. , and Kuehn R. , 2011: Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties. J. Geophys. Res., 116, D19207, doi:10.1029/2011JD015942.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 0 0 0

Application of Cloud Occurrence Climatology from CALIOP to Evaluate Performances of Airborne and Satellite Electro-Optical Sensors

View More View Less
  • 1 Theoretical and Applied Optics Department, Office National d'Études et Recherches Aérospatiales, Palaiseau, France
Restricted access

Abstract

A wide variety of optronic sensors, on board a satellite or airborne platform, are used for remote sensing, surveillance applications, and telecommunications. Cloud presence in the field of view is one of the key factors limiting the performances of these sensors. Consequently, cloud presence must be taken into account in order to evaluate their performances. To that end, a Monte Carlo method is used. Geometrical and optical cloud properties necessary to build the model are obtained from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements that enable one to deal with the optically thinnest clouds. Different viewing geometries are presented, corresponding to surveillance missions by an airborne sensor with close-to-the-horizon viewing and to an optical link between an aircraft and a satellite. Results obtained are compared to a previous study and improvements reached with this new method are discussed.

Corresponding author address: Karine Caillault, Theoretical and Applied Optics Department, Office National d'Etudes et Recherches Aérospatiales, Chemin de la Hunière et des Joncherettes, BP 80100, 91123 Palaiseau CEDEX, France. E-mail: karine.caillault@onera.fr

Abstract

A wide variety of optronic sensors, on board a satellite or airborne platform, are used for remote sensing, surveillance applications, and telecommunications. Cloud presence in the field of view is one of the key factors limiting the performances of these sensors. Consequently, cloud presence must be taken into account in order to evaluate their performances. To that end, a Monte Carlo method is used. Geometrical and optical cloud properties necessary to build the model are obtained from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements that enable one to deal with the optically thinnest clouds. Different viewing geometries are presented, corresponding to surveillance missions by an airborne sensor with close-to-the-horizon viewing and to an optical link between an aircraft and a satellite. Results obtained are compared to a previous study and improvements reached with this new method are discussed.

Corresponding author address: Karine Caillault, Theoretical and Applied Optics Department, Office National d'Etudes et Recherches Aérospatiales, Chemin de la Hunière et des Joncherettes, BP 80100, 91123 Palaiseau CEDEX, France. E-mail: karine.caillault@onera.fr
Save