• Alcott, T. I., Steenburgh W. J. , and Laird N. F. , 2012: Great Salt Lake–effect precipitation: Observed frequency, characteristics, and associated environmental factors. Wea. Forecasting, 27, 954971.

    • Search Google Scholar
    • Export Citation
  • Austin, J. A., and Coleman S. M. , 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett., 34, L06604, doi:10.1029/2006GL029021.

    • Search Google Scholar
    • Export Citation
  • Barton, I., and Takashima T. , 1986: An AVHRR investigation of surface emissivity near Lake Eyre, Australia. Remote Sens. Environ., 20, 153163.

    • Search Google Scholar
    • Export Citation
  • Beisner, K., Naftz D. L. , Johnson W. P. , and Diaz X. , 2009: Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah. Sci. Total Environ., 407, 52635273.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., and López R. E. , 1985: Spatial patterns of convection in south Florida. Mon. Wea. Rev., 113, 12821299.

  • Bolgrien, D., Granin N. , and Levin L. , 1995: Surface temperature dynamics of Lake Baikal observed from AVHRR images. Photogramm. Eng. Remote Sens., 61, 211216.

    • Search Google Scholar
    • Export Citation
  • Bussieres, N., and Schertzer W. , 2003: The evolution of AVHRR-derived water temperatures over lakes in the Mackenzie basin and hydrometeorological applications. J. Hydrometeor., 4, 660672.

    • Search Google Scholar
    • Export Citation
  • Cardona, M. C., Steissberg T. E. , Schladow S. G. , and Hook S. J. , 2008: Relating fish kills to upwellings and wind patterns in the Salton Sea. Hydrobiologia, 604, 8595.

    • Search Google Scholar
    • Export Citation
  • Carpenter, D. M., 1993: The lake effect of the Great Salt Lake: Overview and forecast problems. Wea. Forecasting, 8, 181193.

  • Chelton, D. B., 2005: The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J. Climate, 18, 530550.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., Schlax M. G. , Freilich M. H. , and Milliff R. F. , 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983.

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., 2005: Remote sensing of the surface temperature of the Great Salt Lake. M.S. thesis, Dept. of Meteorology, University of Utah, 98 pp. [Available online at http://home.chpc.utah.edu/~u0198116/Master_Thesis.pdf.]

  • Crosman, E. T., and Horel J. D. , 2009: MODIS-derived surface temperature of the Great Salt Lake. Remote Sens. Environ., 113, 7381.

  • Eichenlaub, V. L., 1970: Lake effect snowfall to the lee of the Great Lakes: Its role in Michigan. Bull. Amer. Meteor. Soc., 51, 403412.

    • Search Google Scholar
    • Export Citation
  • Esaias, W. E., and Coauthors, 1998: An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens., 36, 12501265.

    • Search Google Scholar
    • Export Citation
  • Friedman, D., 1969: Infrared characteristics of ocean water (1.5–15 μm). Appl. Opt., 8, 20732078.

  • Hondzo, M., and Stefan H. G. , 1991: Three case studies of lake temperature and stratification response to warmer climate. Water Resour. Res., 27, 18371846.

    • Search Google Scholar
    • Export Citation
  • Hook, S., Prata F. J. , Alley R. E. , Abtahi A. , Richards R. C. , Schladow S. G. , and Pálmarsson S. , 2003: Retrieval of lake bulk and skin temperature using Along-Track Scanning Radiometer (ATSR-2) data: A case study using Lake Tahoe, California. J. Atmos. Oceanic Technol., 20, 534548.

    • Search Google Scholar
    • Export Citation
  • Hulley, G. C., Hook S. J. , and Schneider P. , 2011: Optimized split-window coefficients for deriving surface temperatures from inland water bodies. Remote Sens. Environ., 115, 37583769.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., Rife D. L. , Grim J. A. , Hahmann A. N. , Hacker J. P. , Ge M. , and Fisher H. H. , 2010: A simple technique for creating regional composites of sea surface temperature from MODIS for use in operational mesoscale NWP. J. Appl. Meteor. Climatol., 49, 22672284.

    • Search Google Scholar
    • Export Citation
  • Kopec, R. J., 1967: Areal patterns of seasonal temperature anomalies in the vicinity of the Great Lakes. Bull. Amer. Meteor. Soc., 48, 884889.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Laird N. F. , 1998: Observations of widespread lake-effect cloudiness: Influences of lake surface temperature and upwind conditions. Wea. Forecasting, 13, 811821.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., Kristovich D. A. R. , Liang X.-Z. , Arritt R. W. , and Labas K. , 2001: Lake Michigan lake breezes: Climatology, local forcing, and synoptic environment. J. Appl. Meteor., 40, 409424.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., Sobash R. , and Hodas N. , 2009: The frequency and characteristics of lake-effect precipitation events associated with the New York State Finger Lakes. J. Appl. Meteor. Climatol., 48, 873886.

    • Search Google Scholar
    • Export Citation
  • Li, X., Pichel W. , Clemente-Colon P. , Krasnopolsky V. , and Sapper J. , 2001: Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data. Int. J. Remote Sens., 22, 12851303.

    • Search Google Scholar
    • Export Citation
  • Liu, J., Wang S. , Yu S. , Yang D. , and Zhang L. , 2009: Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global Planet. Change, 67, 209217.

    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., and Zhu Y. , 2000: Surface energy fluxes on the Great Lakes based on satellite-observed surface temperatures 1992 to 1995. J. Great Lakes Res., 26, 305314.

    • Search Google Scholar
    • Export Citation
  • MacCallum, S. N., and Merchant C. J. , 2012: Surface water temperature observations of large lakes by optimal estimation. Can. J. Remote Sens., 38, 2545.

    • Search Google Scholar
    • Export Citation
  • McCombie, A. M., 1959: Some relations between air temperature and surface water temperature of lakes. Limnol. Oceanogr., 4, 252258.

  • Mogilev, N. Yu., and Gnatovskiy R. Yu. , 2003: Satellite imagery in the study of Lake Baykal surface temperatures. Mapp. Sci. Remote Sens., 40, 4150.

    • Search Google Scholar
    • Export Citation
  • Nehorai, R., Lensky I. M. , Lensky N. G. , and Shiff S. , 2009: Remote sensing of the Dead Sea surface temperature. J. Geophys. Res., 114, C05021, doi:10.1029/2008JC005196.

    • Search Google Scholar
    • Export Citation
  • Niclòs, R., Caselles V. , Coll C. , and Valor E. , 2007: Determination of sea surface temperature at large observation angles using an angular and emissivity-dependent split-window equation. Remote Sens. Environ., 111, 107121.

    • Search Google Scholar
    • Export Citation
  • Onton, D. J., and Steenburgh W. J. , 2001: Diagnostic and sensitivity studies of the 7 December 1998 Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 129, 13181338.

    • Search Google Scholar
    • Export Citation
  • Plattner, S., Mason D. M. , Leshkevich G. A. , Schwab D. J. , and Rutherford E. S. , 2006: Classifying and forecasting coastal upwellings in Lake Michigan using satellite derived temperature images and buoy data. J. Great Lakes Res., 32, 6376.

    • Search Google Scholar
    • Export Citation
  • Politi, E., Cutler M. E. J. , and Rowan J. S. , 2012: Using the NOAA Advanced Very High Resolution Radiometer to characterize temporal and spatial trends in water temperature of large European lakes. Remote Sens. Environ., 126, 111.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., Warner T. T. , Chen F. , and Astling E. G. , 2002: Mechanisms for diurnal boundary layer circulations in the Great Basin Desert. Mon. Wea. Rev., 130, 921938.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., Davis C. A. , Liu Y. , and Warner T. T. , 2004: Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev., 132, 25532569.

    • Search Google Scholar
    • Export Citation
  • Schneider, P., and Hook S. J. , 2010: Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett., 37, L22405, doi:10.1029/2010GL045059.

    • Search Google Scholar
    • Export Citation
  • Schneider, P., Hook S. J. , Radocinski R. G. , Corlett G. K. , Hulley G. C. , Schladow S. G. , and Steissberg T. E. , 2009: Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophys. Res. Lett., 36, L22402, doi:10.1029/2009GL040846.

    • Search Google Scholar
    • Export Citation
  • Song, Q., Chelton D. B. , Esbensen S. K. , Thum N. , and O'Neill L. W. , 2009: Coupling between sea surface temperature and low level winds in mesoscale numerical models. J. Climate, 22, 146164.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and Onton D. J. , 2001: Multiscale analysis of the 7 December 1998 Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 129, 12961317.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., Halvorson S. F. , and Onton D. J. , 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709727.

    • Search Google Scholar
    • Export Citation
  • Thiébaux, J., Rogers E. , Wang W. , and Katz B. , 2003: A new high-resolution blended real-time global sea surface temperature analysis. Bull. Amer. Meteor. Soc., 84, 645656.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2008: New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ., 112, 5974.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., Lakhtakia M. N. , Doyle J. D. , and Pearson R. A. , 1990: Marine atmospheric boundary layer circulations forced by Gulf Stream sea surface temperature gradients. Mon. Wea. Rev., 118, 309323.

    • Search Google Scholar
    • Export Citation
  • Wright, D. M., Posselt D. J. , and Steiner A. L. , 2013: Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes region. Mon. Wea. Rev., 141, 670–689.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., Jin J. , Wang S.-Y. , and Ek M. B. , 2012: Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region. J. Geophys. Res., 117, D09102, doi:10.1029/2011JD016979.

    • Search Google Scholar
    • Export Citation
  • Zumpfe, D. E., and Horel J. D. , 2007: Lake-breeze fronts in the Salt Lake Valley. J. Appl. Meteor. Climatol., 46, 196211.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 4 4 4

Techniques for Using MODIS Data to Remotely Sense Lake Water Surface Temperatures

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 University of Utah, Salt Lake City, Utah
Restricted access

Abstract

This study describes a stepwise methodology used to provide daily high-spatial-resolution water surface temperatures from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data for use nearly in real time for the Great Salt Lake (GSL). Land surface temperature (LST) is obtained each day and then goes through the following series of steps: land masking, quality control based on other concurrent datasets, bias correction, quality control based on LSTs from recent overpasses, temporal compositing, spatial hole filling, and spatial smoothing. Although the techniques described herein were calibrated for use on the GSL, they can also be applied to any other inland body of water large enough to be resolved by MODIS, as long as several months of in situ water temperature observations are available for calibration. For each of the buoy verification datasets, these techniques resulted in mean absolute errors for the final MODIS product that were at least 62% more accurate than those from the operational Real-Time Global analysis. The MODIS product provides realistic cross-lake temperature gradients that are representative of those directly observed from individual MODIS overpasses and is also able to replicate the temporal oscillations seen in the buoy datasets over periods of a few days or more. The increased accuracy, representative temperature gradients, and ability to resolve temperature changes over periods down to a few days can be vital for providing proper surface boundary conditions for input into numerical weather models.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Joseph A. Grim, Research Applications Laboratory, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: grim@ucar.edu

Abstract

This study describes a stepwise methodology used to provide daily high-spatial-resolution water surface temperatures from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data for use nearly in real time for the Great Salt Lake (GSL). Land surface temperature (LST) is obtained each day and then goes through the following series of steps: land masking, quality control based on other concurrent datasets, bias correction, quality control based on LSTs from recent overpasses, temporal compositing, spatial hole filling, and spatial smoothing. Although the techniques described herein were calibrated for use on the GSL, they can also be applied to any other inland body of water large enough to be resolved by MODIS, as long as several months of in situ water temperature observations are available for calibration. For each of the buoy verification datasets, these techniques resulted in mean absolute errors for the final MODIS product that were at least 62% more accurate than those from the operational Real-Time Global analysis. The MODIS product provides realistic cross-lake temperature gradients that are representative of those directly observed from individual MODIS overpasses and is also able to replicate the temporal oscillations seen in the buoy datasets over periods of a few days or more. The increased accuracy, representative temperature gradients, and ability to resolve temperature changes over periods down to a few days can be vital for providing proper surface boundary conditions for input into numerical weather models.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Joseph A. Grim, Research Applications Laboratory, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: grim@ucar.edu
Save