• Atlas, D., Kerker M. , and Hitschfield W. , 1953: Scattering and attenuation by non-spherical atmospheric particles. J. Atmos. Terr. Phys., 3, 108119, doi:10.1016/0021-9169(53)90093-2.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and Tang C. , 1997: Relationships between IWC and polarimetric radar measurands at 94 and 220 GHz for hexagonal columns and plates. J. Atmos. Oceanic Technol., 14, 10551063.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and Singh J. , 2004: Cloud ice crystal classification using a 95-GHz polarimetric radar. J. Atmos. Oceanic Technol., 21, 16791688.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., and Wetzel M. A. , 1997: Storm Peak Laboratory: A research, teaching and service facility for the atmospheric sciences. Bull. Amer. Meteor. Soc., 78, 21152212.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., Niu J. , Yang P. , Kankiewicz J. A. , Larson V. E. , and Vonder Haar T. H. , 2008: The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. J. Appl. Meteor. Climatol., 47, 24872495.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., Brogniez G. , Goloub P. , Breon F. M. , and Flamant P. , 1999: Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1. J. Quant. Spectrosc. Radiat. Transfer, 63, 521543, doi:10.1016/S0022-4073(99)00036-9.

    • Search Google Scholar
    • Export Citation
  • Choularton, T. W., and Coauthors, 2008: The influence of small aerosol particles on the properties of water and ice clouds. Faraday Discuss., 137, 205222, doi:10.1039/B702722M.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., Ackerman T. P. , Mace G. G. , Moran K. P. , Marchand R. T. , Miller M. A. , and Martner B. E. , 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and Hogan R. J. , 2010: Combined CloudSat–CALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Earle, M. E., Liu P. S. K. , Strapp J. W. , Zelenyuk A. , Imre D. , McFarquhar G. M. , Shantz N. C. , and Leaitch W. R. , 2011: Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: Insight from observations of aerosol and clouds during ISDAC. J. Geophys. Res., 116, D00T09, doi:10.1029/2011JD015887.

    • Search Google Scholar
    • Export Citation
  • Hallar, A. G., Chirokova G. , McCubbin I. B. , Painter T. H. , Wiedinmyer C. , and Dodson C. , 2011a: Atmospheric bioaerosols transported via dust storms in western United States. Geophys. Res. Lett., 38, L17801, doi:10.1029/2011GL048166.

    • Search Google Scholar
    • Export Citation
  • Hallar, A. G., Lowenthal D. H. , Chirokova G. , Borys R. D. , and Wiedinmyer C. , 2011b: Persistent daily new particle formation at a mountain-top location. Atmos. Environ., 45, 4111–4115, doi:10.1016/j.atmosenv.2011.04.044.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part I: Median mass diameters and terminal velocities. J. Atmos. Sci., 60, 25732591.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part I: Natural conditions. J. Appl. Meteor., 14, 783804.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Francis P. N. , Flentje H. , Illingworth A. J. , Quante M. , and Pelon J. , 2003: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE'98. Quart. J. Roy. Meteor. Soc., 129, 20892116.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Tian L. , Brown P. R. A. , Westbrook C. D. , Heymsfield A. J. , and Eastment J. D. , 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., Kulie M. S. , and Bennartz R. , 2011: A triple-frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, doi:10.1029/2010JD015430.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., Isaac G. A. , and Hallett J. , 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302, doi:10.1029/1999GL900232.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., Isaac G. A. , and Hallett J. , 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 28732902, doi:10.1002/qj.49712656913.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., Baker B. A. , Schmitt C. G. , and Jensen T. L. , 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106 (D14), 14 98915 014.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., O'Connor D. , Zmarzly P. , Weaver K. , Baker B. , Mo Q. , and Jonsson H. , 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., Kneifel S. , Moisseev D. , Tyynelä J. , Tanelli S. , and Nousiainen T. P. , 2012: Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall. J. Geophys. Res., 117, D18205, doi:10.1029/2012JD017680.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 1999: Automatic self-calibration of ARM microwave radiometers. Microwave Radiometry and Remote Sensing of the Earth's Surface and Atmosphere, P. Pampaloni and S. Paloscia, Eds., CRC Press, 433–443.

  • Mace, J., and Coauthors, 2010: STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment science and operations plan. U.S. Department of Energy Rep. DOE/SC-ARM-10-021, 44 pp.

  • Marchand, R., Ackerman T. , Westwater E. R. , Clough S. A. , Cady-Pereira K. , and Liljegren J. C. , 2003: An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky data. J. Geophys. Res., 108, 4773, doi:10.1029/2003JD003843.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and Heymsfield A. J. , 2008: Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurements. J. Geophys. Res., 113, D00A05, doi:10.1029/2007JD009633.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Reinking R. F. , Kropfli R. A. , Martner B. E. , and Bartram B. W. , 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Reinking R. F. , and Djalalova I. V. , 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Mace G. G. , Marchand R. , Shupe M. D. , Hallar A. G. , and McCubbin I. B. , 2012: Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008.

    • Search Google Scholar
    • Export Citation
  • Noel, V., and Chepfer H. , 2004: Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements. J. Atmos. Sci., 61, 20732081.

    • Search Google Scholar
    • Export Citation
  • Noel, V., and Chepfer H. , 2010: A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). J. Geophys. Res., 115, D00H23, doi:10.1029/2009JD012365.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., 2002: Information content of the 95-GHz cloud radar signals: Theoretical assessment of effects of nonsphericity and error evaluation of the discrete dipole approximation. J. Geophys. Res., 107, 4628, doi:10.1029/2001JD001386.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., Sato K. , and Hagihara Y. , 2010: Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals. J. Geophys. Res., 115, D22209, doi:10.1029/2009JD013383.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., Matrosov S. Y. , Kropfli R. A. , and Bartram B. W. , 2002: Evaluation of a 45° slant quasi-liner radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., and Vali G. , 1987: Ice crystal production by mountain surfaces. J. Climate Appl. Meteor., 26, 11521168.

  • Sassen, K., 1984: Deep orographic cloud structure and composition derived from comprehensive remote sensing measurements. J. Climate Appl. Meteor., 23, 568583.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Benson S. , 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci., 58, 21032112.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Wang Z. , Khvorostyanov V. I. , Stephens G. L. , and Bennedetti A. , 2002: Cirrus cloud ice water content radar algorithm evaluation using an explicit cloud microphysical model. J. Appl. Meteor., 41, 620628.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Kayetha V. K. , and Zhu J. , 2012: Ice cloud depolarization for nadir and off-nadir CALIPSO measurements. Geophys. Res. Lett., 39, L20805, doi:10.1029/2012GL053116.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., Matrosov S. Y. , and Uttal T. , 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711.

    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., Delanoë J. , and Hogan R. J. , 2011: A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS. J. Appl. Meteor. Climatol., 50, 19521969.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., Illingworth A. J. , O'Connor E. J. , and Hogan R. J. , 2010: Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds. Quart. J. Roy. Meteor. Soc., 136, 260276, doi:10.1002/qj.528.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., Han Y. , Shupe M. D. , and Matrosov S. Y. , 2001: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project. J. Geophys. Res., 106 (D23), 32 01932 030.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., Stoelinga M. T. , Locatelli J. D. , and Hobbs P. V. , 2005: Microphysical processes and synergistic interaction between frontal and orographic forcing of precipitation during the 13 December 2001 IMPROVE-2 event over the Oregon Cascades. J. Atmos. Sci., 62, 34933519.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., Yang P. , Dessler A. E. , Hu Y. , and Baum B. A. , 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations. J. Appl. Meteor. Climatol., 51, 14261439.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 2 2 2

Enhanced Radar Backscattering due to Oriented Ice Particles at 95 GHz during StormVEx

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
  • | 3 Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada, and Storm Peak Laboratory, Steamboat Springs, Colorado
  • | 4 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado
Restricted access

Abstract

Nonspherical atmospheric ice particles can enhance radar backscattering and attenuation above that expected from spheres of the same mass. An analysis of scanning 95-GHz radar data collected during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) shows that at a least a small amount of enhanced backscattering was present in most radar scans, with a median enhancement of 2.4 dB at zenith. This enhancement will cause an error (bias) in ice water content (IWC) retrievals that neglect particle orientation, with a value of 2.4 dB being roughly equivalent to a relative error in IWC of 43%. Of the radar scans examined, 25% had a zenith-enhanced backscattering exceeding 3.5 dB (equivalent to a relative error in IWC in excess of 67%) and 10% of the scans had a zenith-enhanced backscattering exceeding 6.4 dB (equivalent to a relative error in IWC in excess of 150%). Cloud particle images indicate that large enhancement typically occurred when planar crystals (e.g., plates and dendrites) were present, with the largest enhancement occurring when large planar crystals were falling out of a supercooled liquid-water layer. More modest enhancement was sometimes due to planar crystals, but it was also sometimes likely a result of horizontally oriented nonspherical irregularly shaped particles. The analysis also shows there is a strong correlation (about −0.79) between the change in slant 45° depolarization ratio with radar scan elevation angle and the magnitude of the zenith-enhanced backscattering, suggesting that measurements of the slant depolarization ratio can be used to improve radar-based cloud microphysical property retrievals.

Corresponding author address: Roger Marchand, Department of Atmospheric Sciences, University of Washington, 408 ATG Building, Seattle, WA 98195-1640. E-mail: rojmarch@u.washington.edu

Abstract

Nonspherical atmospheric ice particles can enhance radar backscattering and attenuation above that expected from spheres of the same mass. An analysis of scanning 95-GHz radar data collected during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) shows that at a least a small amount of enhanced backscattering was present in most radar scans, with a median enhancement of 2.4 dB at zenith. This enhancement will cause an error (bias) in ice water content (IWC) retrievals that neglect particle orientation, with a value of 2.4 dB being roughly equivalent to a relative error in IWC of 43%. Of the radar scans examined, 25% had a zenith-enhanced backscattering exceeding 3.5 dB (equivalent to a relative error in IWC in excess of 67%) and 10% of the scans had a zenith-enhanced backscattering exceeding 6.4 dB (equivalent to a relative error in IWC in excess of 150%). Cloud particle images indicate that large enhancement typically occurred when planar crystals (e.g., plates and dendrites) were present, with the largest enhancement occurring when large planar crystals were falling out of a supercooled liquid-water layer. More modest enhancement was sometimes due to planar crystals, but it was also sometimes likely a result of horizontally oriented nonspherical irregularly shaped particles. The analysis also shows there is a strong correlation (about −0.79) between the change in slant 45° depolarization ratio with radar scan elevation angle and the magnitude of the zenith-enhanced backscattering, suggesting that measurements of the slant depolarization ratio can be used to improve radar-based cloud microphysical property retrievals.

Corresponding author address: Roger Marchand, Department of Atmospheric Sciences, University of Washington, 408 ATG Building, Seattle, WA 98195-1640. E-mail: rojmarch@u.washington.edu
Save