• Atlas, D., Srivastava R. C. , and Sekhon R. S. , 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1984: Boundary layer thermodynamics of a high plains severe storm. Mon. Wea. Rev., 112, 21992211.

  • Biggerstaff, M., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching Radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1984: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112, 10331052.

  • Burgess, D. W., Mansell E. R. , Schwarz C. M. , and Allen B. J. , 2010: Tornado and tornadogenesis events seen by the NOXP, X-band, dual-polarization radar during VORTEX2 2010. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 5.2. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176164.htm.]

  • Dawson, D. T., II, Wicker L. J. , Mansell E. R. , and Tanamachi R. L. , 2012: Impact of the environmental low-level wind profile on ensemble forecasts of the 4 May 2007 Greensburg, Kansas, tornadic storm and associated mesocyclones. Mon. Wea. Rev., 140, 696716.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, Brooks H. E. , and Maddox R. A. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1984: Doppler Radar and Weather Observations. Academic Press, 458 pp.

  • Dowell, D. C., Zhang F. , Wicker L. J. , Snyder C. , and Crook N. A. , 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and Stensrud D. J. , 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and Kinzer G. D. , 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248.

  • Hane, C., Ziegler C. , and Ray P. , 1988: Use of velocity fields from Doppler radars to retrieve other variables in thunderstorms. Instruments and Techniques for Thunderstorm Observation and Analysis, E. Kessler, Ed., Vol. 3, Thunderstorms: A Social, Scientific, and Technological Documentary, 215–234.

  • Hauser, D., and Amayenc P. , 1986: Retrieval of cloud water and water vapor contents from Doppler radar data in a tropical squall line. J. Atmos. Sci., 43, 823838.

    • Search Google Scholar
    • Export Citation
  • Kessinger, C., Ray P. , and Hane C. , 1987: The Oklahoma squall line of 19 May 1977. Part I: A multiple Doppler analysis of convective and stratiform structure. J. Atmos. Sci., 44, 28402864.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369402.

  • Klemp, J. B., and Rotunno R. , 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377.

  • Kumjian, M. R., and Ryzhkov A. V. , 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm and Electrification Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Majcen, M., Markowski P. , Richardson Y. , Dowell D. , and Wurman J. , 2008: Multipass objective analysis of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and Ziegler C. L. , 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., Ziegler C. L. , and Bruning E. , 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Richardson Y. , Markowski P. , Dowell D. , and Wurman J. , 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327.

    • Search Google Scholar
    • Export Citation
  • May, R. M., Biggerstaff M. I. , and Xue M. , 2007: A Doppler radar emulator with an application to the detectability of tornadic signatures. J. Atmos. Oceanic Technol., 24, 19731996.

    • Search Google Scholar
    • Export Citation
  • McGinley, J., 1982: A diagnosis of alpine lee cyclogenesis. Mon. Wea. Rev., 110, 12711287.

  • Oye, R., Mueller C. , and Smith S. , 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Pauley, P., and Wu X. , 1990: The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields. Mon. Wea. Rev., 118, 11451163.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., and Sangren K. L. , 1983: Multiple-Doppler radar network design. J. Climate Appl. Meteor., 22, 14441454.

  • Ray, P. S., Wagner K. K. , Johnson K. W. , Stephens J. J. , Bumgarner W. C. , and Mueller E. A. , 1978: Triple-Doppler observations of a convective storm. J. Appl. Meteor., 17, 12011212.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., Gilet M. , and Johnson K. W. , 1980a: Part IV: Motion field synthesis and radar placement. Bull. Amer. Meteor. Soc., 61, 11841189.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., Ziegler C. L. , Bumgarner W. L. , and Serafin R. J. , 1980b: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 16071625.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and Klemp J. , 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292.

  • Schwarz, C. M., and Burgess D. W. , 2010: Verification of the Origins of Rotation in Tornadoes Experiment, part 2 (VORTEX2): Data from the NOAA (NSSL) X-band dual-polarized radar. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P6.1.

  • Shapiro, A., Willingham K. M. , and Potvin C. K. , 2010: Spatially variable advection correction of radar data. Part I: Theoretical considerations. J. Atmos. Sci., 67, 34453456.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., Weiss C. C. , Schroeder J. L. , Wicker L. J. , and Biggerstaff M. I. , 2011: Observations of the surface boundary structure within the 23 May 2007, Perryton, Texas supercell. Mon. Wea. Rev., 139, 37303749.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Zhang Y. , and Doswell C. A. III, 2001: Extreme rainfall and flooding from supercell thunderstorms. J. Hydrometeor., 2, 469489.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., Rasmussen E. N. , and Fredrickson S. E. , 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13, 921936.

    • Search Google Scholar
    • Export Citation
  • Testud, J., LeBouar E. , Obligis E. , and Ali-Mehenni M. , 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S., 2012: Evaluation of dual-polarization QPE: Initial results for spring and summer 2012: Final report, MOU Task1.1, NOAA/NSSL, 48 pp.

  • Waugh, S., and Fredrickson S. E. , 2010: An improved aspirated temperature system for mobile meteorological observations, especially in severe weather. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P5.2. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176205.htm.]

  • Weiss, C. C., and Schroeder J. L. , 2008: The 2007 and 2008 MOBILE Experiment: Development and testing of the TTU StickNet platforms. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 5.1. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141842.htm.]

  • Wood, V. T., and Brown R. A. , 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2001: The DOW mobile multiple-Doppler network. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P3.3. [Available online at https://ams.confex.com/ams/30radar/techprogram/paper_21572.htm.]

  • Wurman, J., and Gill S. , 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Straka J. , Rasmussen E. , Randall M. , and Zahrai A. , 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Dowell D. , Richardson Y. , Markowski P. , Rasmussen E. , Burgess D. , Wicker L. , and Bluestein H. , 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). Bull. Amer. Meteor. Soc., 93, 11471170.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., Vivekanandan J. , and Brandes E. A. , 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) System. Bull. Amer. Meteor. Soc., 92, 13211338.

  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 2013: A diabatic Lagrangian technique for the analysis of convective storms. Part I: Description and validation via an observing system simulation experiment. J. Atmos. Oceanic Technol., 30, 22482265.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., Ray P. S. , and Knight N. C. , 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681791.

  • Ziegler, C. L., Kennedy D. , and Rasmussen E. N. , 2004: A wireless network for collection and synthesis of mobile mesoscale weather observations. J. Atmos. Oceanic Technol., 21, 16591669.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., Mansell E. , Straka J. , MacGorman D. , and Burgess D. , 2010: The impact of spatial variations of low-level stability on the life cycle of a simulated supercell storm. Mon. Wea. Rev., 138, 17381766.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 1 1 1

A Diabatic Lagrangian Technique for the Analysis of Convective Storms. Part II: Application to a Radar-Observed Storm

View More View Less
  • 1 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

A new diabatic Lagrangian analysis (DLA) technique that derives predicted fields of potential temperature, water vapor and cloud water mixing ratios, and virtual buoyancy from three-dimensional, time-dependent wind and reflectivity fields (see Part I) is applied to the radar-observed 9 June 2009 supercell storm during the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). The DLA diagnoses fields of rain and graupel content from radar reflectivity and predicts the evolution of analysis variables following radar-inferred air trajectories in the evolving storm with application of the diagnosed precipitation fields to calculate Lagrangian-frame microphysical processes. Simple damping and surface flux terms and initialization of trajectories from heterogeneous, parametric mesoscale analysis fields are also included in the predictive Lagrangian calculations. The DLA output compares favorably with observations of surface in situ temperature and water vapor mixing ratio and accumulated rainfall from a catchment rain gauge in the 9 June 2009 storm.

Corresponding author address: Dr. Conrad L. Ziegler, National Severe Storms Laboratory, Forecast Research and Development Division, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: conrad.ziegler@noaa.gov

Abstract

A new diabatic Lagrangian analysis (DLA) technique that derives predicted fields of potential temperature, water vapor and cloud water mixing ratios, and virtual buoyancy from three-dimensional, time-dependent wind and reflectivity fields (see Part I) is applied to the radar-observed 9 June 2009 supercell storm during the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). The DLA diagnoses fields of rain and graupel content from radar reflectivity and predicts the evolution of analysis variables following radar-inferred air trajectories in the evolving storm with application of the diagnosed precipitation fields to calculate Lagrangian-frame microphysical processes. Simple damping and surface flux terms and initialization of trajectories from heterogeneous, parametric mesoscale analysis fields are also included in the predictive Lagrangian calculations. The DLA output compares favorably with observations of surface in situ temperature and water vapor mixing ratio and accumulated rainfall from a catchment rain gauge in the 9 June 2009 storm.

Corresponding author address: Dr. Conrad L. Ziegler, National Severe Storms Laboratory, Forecast Research and Development Division, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: conrad.ziegler@noaa.gov
Save