A Review and Practical Guide to In-Flight Calibration for Aircraft Turbulence Sensors

Clemens Drüe Department of Environmental Meteorology, University of Trier, Trier, Germany

Search for other papers by Clemens Drüe in
Current site
Google Scholar
PubMed
Close
and
Günther Heinemann Department of Environmental Meteorology, University of Trier, Trier, Germany

Search for other papers by Günther Heinemann in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A large number of quantities have to be measured and processed to determine the atmospheric-state variables, which are the actual measurands, from aircraft-based measurements. A great part of the dependencies between these quantities depends on the aerodynamic state of the aircraft. Aircraft-based meteorological measurements, hence, require in-flight calibration. Most operators of research aircraft perform some kind of calibration, but the schemes used and the degree they are documented greatly vary. The flight maneuvers and calculation methods required, however, are published in a number of partly overlapping and partly contradictory publications. Some methods are only presented as a minor issue in publications mainly focused on atmospheric processes and are therefore hard to find. For an aircraft user, it is hence challenging to either perform or verify a calibration because of missing comprehensive guidance. This lack was stated on occasion of the in-flight calibration of the German research aircraft Polar5 carried out for the field experiment Investigation of Katabatic Winds and Polynyas during Summer (IKAPOS). In the present paper, a comprehensive review of the existing literature on this field and a practical guide to the wind calibration of a research aircraft to be used for turbulent flux measurements are given.

Corresponding author address: Clemens Drüe, Universität Trier, Umweltmeteorologie, FB VI, Behringstraße. 21, D-54286 Trier, Germany. E-mail: druee@uni-trier.de

Abstract

A large number of quantities have to be measured and processed to determine the atmospheric-state variables, which are the actual measurands, from aircraft-based measurements. A great part of the dependencies between these quantities depends on the aerodynamic state of the aircraft. Aircraft-based meteorological measurements, hence, require in-flight calibration. Most operators of research aircraft perform some kind of calibration, but the schemes used and the degree they are documented greatly vary. The flight maneuvers and calculation methods required, however, are published in a number of partly overlapping and partly contradictory publications. Some methods are only presented as a minor issue in publications mainly focused on atmospheric processes and are therefore hard to find. For an aircraft user, it is hence challenging to either perform or verify a calibration because of missing comprehensive guidance. This lack was stated on occasion of the in-flight calibration of the German research aircraft Polar5 carried out for the field experiment Investigation of Katabatic Winds and Polynyas during Summer (IKAPOS). In the present paper, a comprehensive review of the existing literature on this field and a practical guide to the wind calibration of a research aircraft to be used for turbulent flux measurements are given.

Corresponding author address: Clemens Drüe, Universität Trier, Umweltmeteorologie, FB VI, Behringstraße. 21, D-54286 Trier, Germany. E-mail: druee@uni-trier.de
Save
  • AEEC, 2001: Mark 33 Digital Information Transfer System (DITS), part 3: File data transfer techniques. Arinc Specification 429P3-18, Airlines Electronic Engineering Committee, Aeronautical Radio Inc., 123 pp.

  • Axford, D. N., 1968: On the accuracy of wind measurements using an inertial platform in an aircraft, and an example of a measurement of the vertical mesostructure of the atmosphere. J. Appl. Meteor., 7, 645666.

    • Search Google Scholar
    • Export Citation
  • Bange, J., and Roth R. , 1999: Helicopter-borne measurements in the nocturnal boundary layer over land—A case study. Bound.-Layer Meteor., 92, 295325.

    • Search Google Scholar
    • Export Citation
  • Bennett, D., 1975: Evaluation of a hemispherical head flow direction sensor for inlet duct measurements. NASA Tech. Memo. NASA TM X-3232, 22 pp.

  • Bögel, W., and Baumann R. , 1991: Test and calibration of the DLR Falcon wind measuring system by maneuvers. J. Atmos. Oceanic Technol., 8, 518.

    • Search Google Scholar
    • Export Citation
  • Brown, E. N., 1988: Position error calibration of a pressure survey aircraft using a trailing cone. NCAR Tech. Note NCAR/TN-313+STR, 29 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-579.pdf.]

  • Brown, E. N., Friehe C. A. , and Lenschow D. H. , 1983: The use of pressure fluctuations on the nose of an aircraft for measuring air motion. J. Climate Appl. Meteor., 22, 171180.

    • Search Google Scholar
    • Export Citation
  • Buzorius, G., Kalogiros J. , and Varutbangkul V. , 2006: Airborne aerosol flux measurements with eddy correlation above the ocean in a coastal environment. J. Aerosol Sci., 37, 12671286, doi:10.1016/j.jaerosci.2005.11.006.

    • Search Google Scholar
    • Export Citation
  • Corby, G. A., 1954: The airflow over mountains: A review of the state of current knowledge. Quart. J. Roy. Meteor. Soc., 80, 491521, doi:10.1002/qj.49708034602.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. L., and Dobosy R. J. , 1992: A sensitive fast-response probe to measure turbulence and heat flux from any airplane. Bound.-Layer Meteor.,59, 257–278, doi:10.1007/BF00119816.

  • Crawford, T. L., McMillen R. T. , and Dobosy R. D. , 1993: Correcting airborne flux measurements for aircraft speed variation. Bound.-Layer Meteor., 66, 237245.

    • Search Google Scholar
    • Export Citation
  • Cremer, M., 2008: Kalibrierung der turbulenzmesssonde der Polar 5. MessWERK Doc. mW-AWI-P5-2008-06, 23 pp.

  • de Mendonça, C. B., Hemerly E. M. , and Góes L. C. S. , 2007: Adaptive stochastic filtering for online aircraft flight path reconstruction. J. Aircr., 44, 15461558, doi:10.2514/1.27625.

    • Search Google Scholar
    • Export Citation
  • de Sá, A. M., Infantosi A. , and Simpson D. , 2002: Coherence between one random and one periodic signal for measuring the strength of responses in the electro-encephalogram during sensory stimulation. Med. Biol. Eng. Comput., 40, 99104, doi:10.1007/BF02347702.

    • Search Google Scholar
    • Export Citation
  • DiMarzio, J., Brenner A. , Schutz R. , Shuman C. A. , and Zwally H. J. , 2007: GLAS/ICESat 1 km laser altimetry digital elevation model of Greenland. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0305.html.]

  • Drüe, C., 2001: Experimentelle Untersuchung arktischer Grenzschichtfronten an der Meereisgrenze in der Davis-Straße. Bonner Meteorologische Abhandlungen, Vol. 54, Asgard-Verlag, 165 pp.

    • Search Google Scholar
    • Export Citation
  • Drüe, C., 2011: Reconstruction of aircraft trajectories from AMDAR weather reports. J. Atmos. Oceanic Technol., 28, 921932.

  • Drüe, C., and Heinemann G. , 2007: Characteristics of intermittent turbulence in the upper stable boundary layer over Greenland. Bound.-Layer Meteor.,124, 361–381, doi:10.1007/s10546-007-9175-8.

  • Drüe, C., Hauf T. , and Hoff A. , 2010: Comparison of boundary-layer profiles and layer detection by AMDAR and WTR/RASS at Frankfurt airport. Bound.-Layer Meteor., 135, 407432, doi:10.1007/s10546-010-9485-0.

    • Search Google Scholar
    • Export Citation
  • FAA, 1968: Maximum allowable airspeed indicator systems. Technical Standard Order TSO-C46a, Aircraft Certification Service, Federal Aviation Administration, U.S. Department of Transportation, 4 pp.

  • FAA, 1988: Air data computer. Technical Standard Order TSO-C106, Aircraft Certification Service, Federal Aviation Administration, U.S. Department of Transportation, 5 pp. [Available online at http://www.airweb.faa.gov/Regulatory_and_Guidance_Library%5CrgTSO.nsf/0/FDC3133EED60BDB986256DC600696543?OpenDocument.]

  • FAA, 1995: Temperature instruments. Technical Standard Order TSO-C43c, Aircraft Certification Service, Federal Aviation Administration, U.S. Department of Transportation, 4 pp.

  • FAA, 2008: Instrument flying handbook. FAA-H-8083-15A, Flight Standards Service, Federal Aviation Administration, U.S. Department of Transportation, 371 pp.

  • FAA, 2011: Flight test guide for certification of part 23 airplanes. Advisory Circular AC 23-8C, Aircraft Certification Service, Federal Aviation Administration, U.S. Department of Transportation, 252 pp. [Available online at http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC%2023-8C.pdf.]

  • Freese, D., and Kottmeier C. , 1998: Radiation exchange between stratus clouds and polar marine surfaces. Bound.-Layer Meteor., 87, 331356, doi:10.1023/A:1000992701127.

    • Search Google Scholar
    • Export Citation
  • French, J. R., Drennan W. M. , Zhang J. A. , and Black P. G. , 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102.

    • Search Google Scholar
    • Export Citation
  • Garman, K. E., and Coauthors, 2006: An airborne and wind tunnel evaluation of a wind turbulence measurement system for aircraft-based flux measurements. J. Atmos. Oceanic Technol., 23, 16961708.

    • Search Google Scholar
    • Export Citation
  • Garman, K. E., Wyss P. , Carlsen M. , Zimmerman J. , Stirm B. , Carney T. , Santini R. , and Shepson P. , 2008: The contribution of variability of lift-induced upwash to the uncertainty in vertical winds determined from an aircraft platform. Bound.-Layer Meteor., 126, 461476, doi:10.1007/s10546-007-9237-y.

    • Search Google Scholar
    • Export Citation
  • Gracey, W., 1958: Measurement of static pressure on aircraft. National Advisory Committee for Aeronautics, Langley Aeronautical Laboratory, NACA Rep. 1364, 23 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930092348_1993092348.pdf.]

  • Grant, A. L. M., and Hignett P. , 1998: Aircraft observations of the surface energy balance in TOGA-COARE. Quart. J. Roy. Meteor. Soc., 124, 101122, doi:10.1002/qj.49712454505.

    • Search Google Scholar
    • Export Citation
  • Haman, K. E., Malinowski S. P. , Strus B. D. , Busen R. , and Stefko A. , 2001: Two new types of ultrafast aircraft thermometer. J. Atmos. Oceanic Technol., 18, 117134.

    • Search Google Scholar
    • Export Citation
  • Hastings, D. A., and Coauthors, 1999: The Global Land One-Kilometer Base Elevation (GLOBE) Digital Elevation Model, version 1.0. [Available online at http://www.ngdc.noaa.gov/mgg/topo/globe.html.]

  • Heinemann, G., Ernsdorf T. , and Drüe C. , 2011: Investigation of Katabatic Winds and Polynyas during Summer—IKAPOS: Field phase report. Reports on Polar and Marine Research 633, 120 pp. [Available online at http://hdl.handle.net/10013/epic.37929.]

  • Herber, A., Dethloff K. , Haas Ch. , Steinhage D. , Strapp J. W. , Bottenheim J. , McElroy T. , and Yamanouchi T. , 2008: Polar 5—A new research aircraft for improved access to the Arctic. Extended Abstracts, First Int. Symp. on the Arctic Research (ISAR-1), Miraikan, Tokyo, Japan, IASC, G1-8. [Available online at http://hdl.handle.net/10013/epic.34660.]

  • Honeywell, 2004: Laseref V micro inertial reference system. Honeywell International Fact Sheet, 3 pp.

  • ICAO, 2002: Manual on implementation of a 300 m (1000 ft) vertical separation minimum between FL290 and FL410 inclusive. International Civil Aviation Organization Tech. Doc. 9574 AN/934, 2nd ed., 44 pp. [Available online at http://www.skybrary.aero/bookshelf/books/1311.pdf.]

  • Inverarity, G. W., 2000: Correcting airborne temperature data for lags introduced by instruments with two-time-constant responses. J. Atmos. Oceanic Technol., 17, 176184.

    • Search Google Scholar
    • Export Citation
  • JCGM, 2008: Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Bureau International des Poids et Mesures JCGM 100, 120 pp. [Available online at http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.]

  • JCGM, 2012: International vocabulary of metrology—Basic and general concepts and associated terms. Bureau International des Poids et Mesures JCGM 200, 3rd ed., 91 pp. [Available online at http://www.bipm.org/en/publications/guides/vim.html.]

  • Joyner, D., 2006: Oscas: maxima. ACM Commun. Comput. Algebra,40, 108–111, doi:10.1145/1279721.1279726.

  • Kalogiros, J. A., and Wang Q. , 2002: Calibration of a radome-differential GPS system on a Twin Otter research aircraft for turbulence measurements. J. Atmos. Oceanic Technol., 19, 159171.

    • Search Google Scholar
    • Export Citation
  • Khelif, D., Burns S. P. , and Friehe C. A. , 1999: Improved wind measurements on research aircraft. J. Atmos. Oceanic Technol., 16, 860875.

    • Search Google Scholar
    • Export Citation
  • Klein, T., and Heinemann G. , 2002: Interaction of katabatic winds and mesocyclones near the eastern coast of Greenland. Meteor. Appl., 9, 407422.

    • Search Google Scholar
    • Export Citation
  • Kristensen, L., Mann J. , Oncley S. P. , and Wyngaard J. C. , 1997: How close is close enough when measuring scalar fluxes with displaced sensors? J. Atmos. Oceanic Technol., 14, 814821.

    • Search Google Scholar
    • Export Citation
  • Leise, J. A., and Masters J. M. , 1993: Wind measurement from aircraft. NOAA Tech. Memo. ARL-266, 209 pp.

  • Lenschow, D. H., 1972: The measurement of air velocity and temperature using the NCAR Buffalo aircraft measuring system. NCAR Tech. Rep. NCAR-TN/EDD-74, 39 pp. [Available online at http://nldr.library.ucar.edu/repository/collections/TECH-NOTE-000-000-000-064.]

  • Lenschow, D. H., 1976: Estimating updraft velocity from an airplane response. Mon. Wea. Rev.,104, 618–627.

  • Lenschow, D. H., 1986: Probing the Atmospheric Boundary Layer. Amer. Meteor. Soc., 269 pp.

  • Lenschow, D. H., and Pennell W. T. , 1974: On the measurement of in-cloud and wet-bulb temperatures from an aircraft. Mon. Wea. Rev., 102, 447454.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., Krummel P. B. , and Siems S. T. , 1999: Measuring entrainment, divergence, and vorticity on the mesoscale from aircraft. J. Atmos. Oceanic Technol., 16, 13841400.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., Savic-Jovcic V. , and Stevens B. , 2007: Divergence and vorticity from aircraft air motion measurements. J. Atmos. Oceanic Technol., 24, 20622072.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., Nicholls J. M. , Kennedy P. J. , Klemp J. B. , and Chervin R. M. , 1982: Aircraft measurements of wave momentum flux over the Colorado Rocky Mountains. Quart. J. Roy. Meteor. Soc., 108, 625642, doi:10.1002/qj.49710845709.

    • Search Google Scholar
    • Export Citation
  • Matejka, T., and Lewis S. A. , 1997: Improving research aircraft navigation by incorporating INS and GPS information in a variational solution. J. Atmos. Oceanic Technol., 14, 495511.

    • Search Google Scholar
    • Export Citation
  • Metzger, S., Junkermann W. , Butterbach-Bahl K. , Schmid H. P. , and Foken T. , 2011: Corrigendum to “Measuring the 3-D wind vector with a weight-shift microlight aircraft” published in Atmos. Meas. Tech., 4, 1421–1444, 2011. Atmos. Meas. Tech., 4, 15151539, doi:10.5194/amt-4-1515-2011.

    • Search Google Scholar
    • Export Citation
  • Moninger, W. R., Mamrosh R. D. , and Pauley P. M. , 2003: Automated meteorological reports from commercial aircraft. Bull. Amer. Meteor. Soc., 84, 203216.

    • Search Google Scholar
    • Export Citation
  • Nacass, P. L., 1992: Theoretical errors on airborne measurements of: Static pressure, impact temperature, air flow angle, air flow speed. NCAR Tech. Note NCAR/TN-385+STR, 62 pp.

  • Parkinson, B., and Gilbert S. , 1983: NAVSTAR: Global positioning system—Ten years later. Proc. IEEE, 71, 11771186, doi:10.1109/PROC.1983.12745.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., and Renfrew I. A. , 2009: Aircraft-based observations of air–sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Quart. J. Roy. Meteor. Soc., 135, 20302045, doi:10.1002/qj.355.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., Teukolsky S. A. , Vetterling W. T. , and Flannery B. P. , 1986: Numerical Recipes in Fortran. Cambridge University Press, 848 pp.

    • Search Google Scholar
    • Export Citation
  • Rodi, A. R., and Spyers-Duran P. A. , 1972: Analysis of time response of airborne temperature sensors. J. Appl. Meteor., 11, 554556.

  • Rosemount, 1988: Rosemount model 858 flow angle sensors. Tech. Rep. 1014, Aerospace Division, Rosemount Inc., 9 pp.

  • Sethuraman, S., Brown R. , Raynor G. , and Tuthill W. , 1979: Calibration and use of a sailplane variometer to measure vertical velocity fluctuations. Bound.-Layer Meteor., 16, 99105, doi:10.1007/BF02524401.

    • Search Google Scholar
    • Export Citation
  • Spiess, T., Bange J. , Buschmann M. , and Vörsmann P. , 2007: First application of the meteorological mini-UAV ‘M2AV.’ Meteor. Z., 16, 159169, doi:10.1127/0941-2948/2007/0195.

    • Search Google Scholar
    • Export Citation
  • Spyers-Duran, P., and Baumgardner D. , 1983: In flight estimation of the time response of airborne temperature sensors. Preprints, Fifth Symp. on Meteorological Observations and Instrumentation, Toronto, ON, Canada, Amer. Meteor. Society, 352–357.

  • Stengel, R. F., 2004: Flight Dynamics. Princeton University Press, 845 pp.

  • Stickney, T. M., Shedlov M. W. , and Thompson D. I. , 1994: Goodrich total temperature sensors. Goodrich Corporation Tech. Rep. 5755, 30 pp.

  • Strunin, M. A., and Hiyama T. , 2004: Response properties of atmospheric turbulence measurement instruments using Russian research aircraft. Hydrol. Processes, 18, 30993117, doi:10.1002/hyp.5751.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1976: Internal gravity waves generated by penetrative convection. J. Atmos. Sci., 33, 12791286.

  • Telford, J. W., and Wagner P. B. , 1974: The measurement of horizontal air motion near clouds from aircraft. J. Atmos. Sci., 31, 20662080.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., Wagner P. B. , and Vaziri A. , 1977: The measurement of air motion from aircraft. J. Appl. Meteor., 16, 156166.

  • Tjernström, M., and Friehe C. A. , 1991: Analysis of a radome air-motion system on a twin-jet aircraft for boundary-layer research. J. Atmos. Oceanic Technol., 8, 1940.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Samuelsson P. , 1995: The effect of inertial navigation system time response on airborne turbulence measurements. J. Atmos. Oceanic Technol., 12, 11961213.

    • Search Google Scholar
    • Export Citation
  • van den Kroonenberg, A., Martin T. , Buschmann M. , Bange J. , and Vörsmann P. , 2008: Measuring the wind vector using the autonomous mini aerial vehicle M2AV. J. Atmos. Oceanic Technol., 25, 19691982.

    • Search Google Scholar
    • Export Citation
  • van den Kroonenberg, A., Martin S. , Beyrich F. , and Bange J. , 2012: Spatially-averaged temperature structure parameter over a heterogeneous surface measured by an unmanned aerial vehicle. Bound.-Layer Meteor., 142, 5577, doi:10.1007/s10546-011-9662-9.

    • Search Google Scholar
    • Export Citation
  • Vörsmann, P., 1990: METEOPOD, an airborne system for measurements of mean wind, turbulence, and other meteorological parameters. Onde Electr., 70, 3138.

    • Search Google Scholar
    • Export Citation
  • Vörsmann, P., Friederici B. , and Hoff A. M. , 1989: METEOPOD—Ein flugzeuggestütztes turbulenzmeßsystem. Promet,19, 57–64. [Available online at http://www.dmg-ev.de/gesellschaft/publikationen/pdf/promet/promet_90_93/Promet%201_2_89.pdf.]

  • Wang, Y., and Geerts B. , 2009: Estimating the evaporative cooling bias of an airborne reverse flow thermometer. J. Atmos. Oceanic Technol., 26, 321.

    • Search Google Scholar
    • Export Citation
  • Williams, A., and Marcotte D. , 2000: Wind measurements on a maneuvering twin-engine turboprop aircraft accounting for flow distortion. J. Atmos. Oceanic Technol., 17, 795810.

    • Search Google Scholar
    • Export Citation
  • Wood, R., Stromberg I. M. , Jonas P. R. , and Mill C. S. , 1997: Analysis of an air motion system on a light aircraft for boundary layer research. J. Atmos. Oceanic Technol., 14, 960968.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2562 1271 498
PDF Downloads 1375 204 15