A New Method to Produce Sea Surface Temperature Using Satellite Data Assimilation into an Atmosphere–Ocean Mixed Layer Coupled Model

Eunjeong Lee Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Eunjeong Lee in
Current site
Google Scholar
PubMed
Close
,
Yign Noh Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Yign Noh in
Current site
Google Scholar
PubMed
Close
, and
Naoki Hirose Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan

Search for other papers by Naoki Hirose in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A new method of producing sea surface temperature (SST) data for numerical weather prediction is suggested, which is obtained from the assimilation of satellite-derived SST into an atmosphere–ocean mixed layer coupled model. The Weather Research and Forecasting (WRF) Model and the Noh mixed layer model are used for the atmosphere and ocean mixed layer models, respectively. Data assimilation (DA) is carried out in two steps, based on the estimation from the covariance matching method that the daily mean SST of satellite data is more accurate than the model data, if the number of data in a grid per day is sufficiently large—that is, the daily mean SST bias correction in the first DA and the sequential SST anomaly correction in the second DA. For the second DA, the model restarts from the initial condition corrected by the first DA, and DA is applied every 30 min using the nudging method. The daily mean and the diurnal variation of satellite SST are assimilated to the bulk and skin SST, respectively. The modeled results with the new data assimilation scheme are validated by statistical comparison with independent satellite and buoy data such as correlation coefficient, root-mean-square difference, and bias. Furthermore, the sensitivity and seasonal variation of the weighting factor in the second DA are examined. The new approach illustrates the possibility of applying the atmosphere–ocean mixed layer coupled model for the production of SST data combined with the assimilation of satellite data.

Corresponding author address: Yign Noh, Department of Atmospheric Sciences, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea. E-mail: noh@yonsei.ac.kr

Abstract

A new method of producing sea surface temperature (SST) data for numerical weather prediction is suggested, which is obtained from the assimilation of satellite-derived SST into an atmosphere–ocean mixed layer coupled model. The Weather Research and Forecasting (WRF) Model and the Noh mixed layer model are used for the atmosphere and ocean mixed layer models, respectively. Data assimilation (DA) is carried out in two steps, based on the estimation from the covariance matching method that the daily mean SST of satellite data is more accurate than the model data, if the number of data in a grid per day is sufficiently large—that is, the daily mean SST bias correction in the first DA and the sequential SST anomaly correction in the second DA. For the second DA, the model restarts from the initial condition corrected by the first DA, and DA is applied every 30 min using the nudging method. The daily mean and the diurnal variation of satellite SST are assimilated to the bulk and skin SST, respectively. The modeled results with the new data assimilation scheme are validated by statistical comparison with independent satellite and buoy data such as correlation coefficient, root-mean-square difference, and bias. Furthermore, the sensitivity and seasonal variation of the weighting factor in the second DA are examined. The new approach illustrates the possibility of applying the atmosphere–ocean mixed layer coupled model for the production of SST data combined with the assimilation of satellite data.

Corresponding author address: Yign Noh, Department of Atmospheric Sciences, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea. E-mail: noh@yonsei.ac.kr
Save
  • Artale V., D’Ortenzio F. , Iudicone D. , Marulloa S. , Rupolo V. , and Santolerib R. , 1998: Assimilation of satellite AVHRR SST in an OGCM of the Mediterranean Sea: Data processing, new parametrizations, and physical results. Earth Surface Remote Sensing II, G. Cecchi and E. Zilioli, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 3496), doi:10.1117/12.332715.

  • Ba, S. O., Corpetti T. , Chapron B. , and Fablet R. , 2010: Variational data assimilation for missing data interpolation in SST images. Proc. 2010 IEEE International Geoscience and Remote Sensing Symp., IEEE, 264–267, doi:10.1109/IGARSS.2010.5649206.

  • Bellenger, H., and Duvel J.-P. , 2009: An analysis of tropical ocean diurnal warm layers. J. Climate, 22, 36293646.

  • Brankart, J.-M., Testut C.-E. , Brasseur P. , and Verron J. , 2003: Implementation of a multivariate data assimilation scheme for isopycnic coordinate ocean models: Application to a 1993–1996 hindcast of the North Atlantic Ocean circulation. J. Geophys. Res., 108, 3074, doi:10.1029/2001JC001198.

    • Search Google Scholar
    • Export Citation
  • Carter, E. F., and Robinson A. R. , 1987: Analysis models for the estimation of oceanic fields. J. Atmos. Oceanic Technol., 4, 4974.

  • Davis, C. A., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF model. Mon. Wea. Rev., 136, 19902005.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Minnett P. J. , Gentemann C. , Nightingale T. J. , Barton I. J. , Ward B. , and Murray M. J. , 2002: Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15, 353369.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Coauthors, 2007: The Global Ocean Data Assimilation Experiment High-Resolution Sea Surface Temperature Pilot Project. Bull. Amer. Meteor. Soc., 88, 11971213.

    • Search Google Scholar
    • Export Citation
  • Duan, A., Sui C. , and Wu G. , 2008: Simulation of local air-sea interaction in the great warm pool and its influence on Asian monsoon. J. Geophys. Res., 113, D22105, doi:10.1029/2008JD010520.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Dybbroe, A., Karllson K.-G. , and Thoss A. , 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteor., 44, 3954.

    • Search Google Scholar
    • Export Citation
  • Fan, S., Oey L.-Y. , and Hamilton P. , 2004: Assimilation of drifter and satellite data in a model of the northeastern Gulf of Mexico. Cont. Shelf Res., 24, 10011013.

    • Search Google Scholar
    • Export Citation
  • Flament, C. W., Firing J. , Sawyer M. , and Trefois C. , 1994: Amplitude and horizontal structure of a large diurnal sea surface warming event during the Coastal Ocean Dynamics Experiment. J. Phys. Oceanogr., 24, 124139.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., Fukumori I. , and Miller R. N. , 1993: Fitting dynamic models to the Geosat sea level observations in the tropical Pacific Ocean. Part II: A linear, wind-driven model. J. Phys. Oceanogr., 23, 21622181.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., Raghunath R. , Fu L.-L. , and Chao Y. , 1999: Assimilation of TOPEX/Poseidon altimeter data into a global ocean circulation model: How good are the results? J. Geophys. Res., 104 (C11), 25 64725 665.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., Campos E. J. D. , Hazeleger W. , Severijns C. , Piola A. , and Molteni F. , 2005: Dominant modes of variability in the South Atlantic: A study with a hierarchy of ocean–atmosphere models. J. Climate, 18, 17191735.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and Emori S. , Eds., 2004: Coupled GCM (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research, University of Tokyo, 34 pp. [Available online at http://ccsr.aori.u-tokyo.ac.jp/~hasumi/miroc_description.pdf.]

  • Hepplewhite, C. L., 1989: Remote observation of the sea surface and atmosphere: The oceanic skin effect. Int. J. Remote Sens., 10, 801810.

    • Search Google Scholar
    • Export Citation
  • Hirose, N., Kawamura H. , Lee H. J. , and Yoon J.-H. , 2007: Sequential forecasting of the surface and subsurface conditions in the Japan Sea. J. Oceanogr., 63, 467481.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Dudhia J. , and Chen S.-H. , 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kawai, Y., and Kawamura H. , 2005: Spatial and temporal variations of model-derived diurnal amplitude of sea surface temperature in the western Pacific Ocean. J. Geophys. Res., 110, C08012, doi:10.1029/2004JC002652.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and Wada A. , 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., Ou M.-L. , Sohn E.-H. , and Kim Y. , 2011: Characteristics of sea surface temperature retrieved from MTSAT-1R and in-situ data. Asia-Pac. J. Atmos. Sci., 47, 421427.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., Foley D. , Strub P. T. , Egbert G. D. , and Allen J. S. , 2011: Variational assimilation of satellite observations in a coastal ocean model off Oregon. J. Geophys. Res., 116, C05006, doi:10.1029/2010JC006909.

    • Search Google Scholar
    • Export Citation
  • Lebeaupin Brossier, C., and Drobinski P. , 2009: Numerical high-resolution air-sea coupling over the Gulf of Lions during two tramontane/mistral events. J. Geophys. Res., 114, D10110, doi:10.1029/2008JD011601.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., Mishonov A. V. , Antonov J. I. , Boyer T. P. , and Garcia H. E. , 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

  • Manda, A., Hirose N. , and Yanagi T. , 2005: Feasible method for the assimilation of satellite-derived SST with an ocean circulation model. J. Atmos. Oceanic Technol., 22, 746756.

    • Search Google Scholar
    • Export Citation
  • Martin, M. J., Hines A. , and Bell M. J. , 2007: Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Quart. J. Roy. Meteor. Soc., 133, 981995.

    • Search Google Scholar
    • Export Citation
  • McClain, E. P., Pichel W. P. , and Walton C. C. , 1985: Comparative performance of AVHRR-based multichannel sea surface temperature. J. Geophys. Res., 90 (C6), 11 58711 601.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and Chechelnitsky M. , 2000: Error estimates for an ocean general circulation model from altimeter and acoustic tomography data. Mon. Wea. Rev., 128, 763778.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Filipiak M. J. , Le Borgne P. , Roquet H. , Autret E. , Piollé J.-F. , and Lavender S. , 2008: Diurnal warm-layer events in the western Mediterranean and European shelf seas. Geophys. Res. Lett., 35, L04601, doi:10.1029/2007GL033071.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Le Borgne P. , Roquet H. , and Marsouin A. , 2009: Sea surface temperature from a geostationary satellite by optimal estimation. Remote Sens. Environ., 113, 445457.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubnam S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated k-model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • National Institute of Meteorological Research, 2009: National Institute of Meteorological Research annual report: Research for the meteorological observation technology and its application. NIMR, 215 pp.

  • Niiler, P. P., and Kraus E. B. , 1977: One-dimensional models of the upper ocean. Modeling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon Press, 143–172.

  • Noh, Y., and Kim H. J. , 1999: Simulation of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104 (C7), 15 62115 634.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Jang C. J. , Yamagata T. , Chu P. C. , and Kim C.-H. , 2002: Simulation of more realistic upper-ocean process from an OGCM with a new ocean mixed layer model. J. Phys. Oceanogr., 32, 12841307.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Cheon W. G. , Hong S.-Y. , and Raasch S. , 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Min H. S. , and Raasch S. , 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Goh G. , and Raasch S. , 2011a: Influence of Langmuir circulation on the deepening of the wind-mixed layer. J. Phys. Oceanogr., 41, 472484.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Lee E. , Kim D.-H. , Hong S.-Y. , Kim M.-J. , and Ou M.-L. , 2011b: Prediction of the diurnal warming of sea surface temperature using an atmosphere-ocean mixed layer coupled model. J. Geophys. Res., 116, C11023, doi:10.1029/2011JC006970.

    • Search Google Scholar
    • Export Citation
  • Notarstefano, G., Mauri E. , and Poulain P.-M. , 2006: Near-surface thermal structure and surface diurnal warming in the Adriatic Sea using satellite and drifter data. Remote Sens. Environ., 101, 194211.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and Simpson J. J. , 1981: The temperature difference across the cool skin of the ocean. J. Geophys. Res., 86 (C11), 11 04411 054.

    • Search Google Scholar
    • Export Citation
  • Pimentel, S., Haines K. , and Nichols N. K. , 2008: The assimilation of satellite-derived sea surface temperatures into a diurnal cycle model. J. Geophys. Res., 113, C09013, doi:10.1029/2007JC004608.

    • Search Google Scholar
    • Export Citation
  • Powell, B. S., Arango H. G. , Moore A. M. , Di Lorenzo E. , Milliff R. F. , and Foley D. , 2008: 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS). Ocean Modell., 25, 173188.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., Sanford T. , and Forristall G. Z. , 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260.

  • Rascle, N., and Ardhuin F. , 2009: Drift and mixing under the ocean surface revisited: Stratified conditions and model-data comparisons. J. Geophys. Res., 114, C02016, doi:10.1029/2007JC004466.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Soloviev, A. V., and Schlüssel P. , 1996: Evolution of cool skin and direct air-sea gas transfer coefficient during daytime. Bound.-Layer Meteor., 77, 4568.

    • Search Google Scholar
    • Export Citation
  • Stuart-Menteth, A. C., and Robinson I. S. , 2003: A global study of diurnal warming using satellite-derived sea surface temperature. J. Geophys. Res., 108, 3155, doi:10.1029/2002JC001534.

    • Search Google Scholar
    • Export Citation
  • Takaya, Y., Bildot J.-R. , Beljaars A. C. M. , and Janssen P. A. E. M. , 2010: Refinements to a prognostic scheme of skin sea surface temperature. J. Geophys. Res., 115, C06009, doi:10.1029/2009JC005985.

    • Search Google Scholar
    • Export Citation
  • Ueno, G., and Nakamura N. , 2013: Iterative algorithm for maximum-likelihood estimation of the observation-error covariance matrix for ensemble-based filters. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2134, in press.

    • Search Google Scholar
    • Export Citation
  • Wick, G. A., Bates J. J. , and Scott D. J. , 2002: Satellite and skin-layer effects on the accuracy of sea surface temperature measurements from the GOES satellites. J. Atmos. Oceanic Technol., 19, 18341848.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., Vitart F. , and Balmaseda M. A. , 2007: The role of the ocean in the Madden-Julian Oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Beljaars A. , 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605, doi:10.1029/2005GL023030.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 855 523 202
PDF Downloads 172 44 1