• Diak, G. R., Micikalski J. R. , Anderson M. C. , Norman J. M. , Kustas W. P. , Torn R. D. , and DeWolf R. L. , 2004: Estimating land surface energy budgets from space: Review and current efforts at the University of Wisconsin—Madison and USDA–ARS. Bull. Amer. Meteor. Soc.,85, 65–78.

  • Hannon, S. E., Strow L. L. , and McMillan W. W. , 1996: Atmospheric infrared fast transmittance models: A comparison of two approaches. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 2830), 94–105.

  • Heidinger, A., Evan A. , Foster M. J. , and Walther A. , 2012: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol., 51, 11291144.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A., Foster M. J. , and Walther A. , 2013: The Pathfinder Atmospheres–Extended (PATMOS-x) AVHRR climate dataset. Bull. Amer. Meteor. Soc., in press.

  • Jin, M., 2004: Analysis of land skin temperature using AVHRR observations. Bull. Amer. Meteor. Soc., 85, 587600.

  • Meng, C. J., Pinker R. T. , Tarpley J. D. , and Laszlo I. , 2003: A satellite approach for estimating regional land surface energy budget for GCIP/GAPP. J. Geophys. Res., 108, 8861, doi:10.1029/2002JD003088.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Khaiyer M. M. , 2000: Anisotropy of land surface skin temperature derived from satellite data. J. Appl. Meteor., 39, 11171129.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Pinheiro, A. C. T., Privette J. L. , Mahoney R. , and Tucker C. J. , 2004: Directional effects in a daily AVHRR land surface temperature dataset over Africa. IEEE Trans. Geosci. Remote Sens., 42, 19411954.

    • Search Google Scholar
    • Export Citation
  • Rao, C., Sullivan J. , Walton C. , Brown J. , and Evans R. , 1993: Non-linearity corrections for the thermal infrared channels of the Advanced Very High Resolution Radiometer: Assessment and corrections. NOAA Tech. Rep. NESDIS 69, 31 pp.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc.,91, 1015–1057.

  • Seemann, S. W., Borbas E. E. , Knuteson R. O. , Stephenson G. R. , and Huang H.-L. , 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108123.

    • Search Google Scholar
    • Export Citation
  • Tarpley, J. D., 1994: Monthly evapotranspiration from satellite and conventional meteorological observations. J. Climate, 7, 704713.

  • Wang, K., and Liang S. L. , 2009: Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ., 113, 15561565.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Wan Z. , Wang P. , Sparrow M. , Liu J. , Zhou X. , and Haginoya S. , 2005: Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res., 110, D11109, doi:10.1029/2004JD005566.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., Tarpley D. , Privette J. , Rama Varna Raja M. , Vinnikov K. , and Xu H. , 2009: Developing algorithm for operational GOES-R land surface temperature product. IEEE Trans. Geosci. Remote Sens., 47, 936951.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., Tarpley D. , Xu H. , and Chen M. , 2010: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for land surface temperature. Version 2, NOAA/NESDIS/STAR, 96 pp. [Available online at http://www.goes-r.gov/products/ATBDs/baseline/baseline-LST-v2.0.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 7 7 7

Using SURFRAD to Verify the NOAA Single-Channel Land Surface Temperature Algorithm

View More View Less
  • 1 NOAA/NESDIS/STAR/Advanced Satellite Products Branch, Madison, Wisconsin
  • | 2 NOAA/NESDIS/STAR/Environmental Monitoring Branch, College Park, Maryland
  • | 3 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
  • | 4 Short and Associates, Washington, D.C.
Restricted access

Abstract

Because of spectral shifts from instrument to instrument in the operational NOAA satellite imager longwave infrared channels, the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) has developed a single-channel land surface temperature (LST) algorithm based on the observed 11-μm radiances, numerical weather prediction data, and radiative transfer modeling that allows for consistent results from the Geostationary Operational Environmental Satellite-I/L (GOES-I/L), GOES-M–P, and Advanced Very High Resolution Radiometer (AVHRR)/1 through 3 sensor versions. This approach is implemented in the real-time NESDIS processing systems [GOES Surface and Insolation Products (GSIP) and Clouds from AVHRR Extended (CLAVR-x)], and in the Pathfinder Atmospheres–Extended (PATMOS-x) climate dataset. An analysis of the PATMOS-x LST against that derived from the upwelling broadband longwave flux at each Surface Radiation Network (SURFRAD) site showed that biases in PATMOS-x were approximately 1 K or less. The standard deviations of the PATMOS-x minus SURFRAD LST biases are generally 2.5 K or less at all sites for all sensors. Using the PATMOS-x minus SURFRAD LST distributions to validate the PATMOS-x cloud detection, the PATMOS-x cloud probability of correct detection values were shown to meet the GOES-R specifications for all sites.

Corresponding author address: Andrew Heidinger, NOAA/NESDIS, 1225 West Dayton St., Madison, WI 53706. E-mail: andrew.heidinger@noaa.gov

Abstract

Because of spectral shifts from instrument to instrument in the operational NOAA satellite imager longwave infrared channels, the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) has developed a single-channel land surface temperature (LST) algorithm based on the observed 11-μm radiances, numerical weather prediction data, and radiative transfer modeling that allows for consistent results from the Geostationary Operational Environmental Satellite-I/L (GOES-I/L), GOES-M–P, and Advanced Very High Resolution Radiometer (AVHRR)/1 through 3 sensor versions. This approach is implemented in the real-time NESDIS processing systems [GOES Surface and Insolation Products (GSIP) and Clouds from AVHRR Extended (CLAVR-x)], and in the Pathfinder Atmospheres–Extended (PATMOS-x) climate dataset. An analysis of the PATMOS-x LST against that derived from the upwelling broadband longwave flux at each Surface Radiation Network (SURFRAD) site showed that biases in PATMOS-x were approximately 1 K or less. The standard deviations of the PATMOS-x minus SURFRAD LST biases are generally 2.5 K or less at all sites for all sensors. Using the PATMOS-x minus SURFRAD LST distributions to validate the PATMOS-x cloud detection, the PATMOS-x cloud probability of correct detection values were shown to meet the GOES-R specifications for all sites.

Corresponding author address: Andrew Heidinger, NOAA/NESDIS, 1225 West Dayton St., Madison, WI 53706. E-mail: andrew.heidinger@noaa.gov
Save