• Achtemeier, G. L., 1991: The use of insects as tracers for “clear-air” boundary-layer studies by Doppler radar. J. Atmos. Oceanic Technol., 8, 746765.

    • Search Google Scholar
    • Export Citation
  • Bachmann, S., and Zrnić D. , 2007: Spectral density of polarimetric variables separating biological scatterers in the VAD display. J. Atmos. Oceanic Technol., 24, 11861198.

    • Search Google Scholar
    • Export Citation
  • Bochnik, M., 2011: Region 9—Hudson-Delaware. Kingbird, 61, 357361.

  • Bonter, D. N., Gauthreaux S. A. , and Donovan T. M. , 2009: Migrating birds: Remote sensing with radar in the Great Lakes Basin. Conserv. Biol., 23, 440448.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 636 pp.

  • Chapman, J. W., Drake V. A. , and Reynolds D. R. , 2011: Recent insights from radar studies of insect flight. Annu. Rev. Entomol., 56, 337356.

    • Search Google Scholar
    • Export Citation
  • Chilson, P. B., Frick W. F. , Stepanian P. M. , Shipley J. R. , Kunz T. H. , and Kelly J. F. , 2012a: Estimating animal densities in the aerosphere using weather radar: To Z or not to Z? Ecosphere,3, Article 72, doi:10.1890/ES12-00027.1.

  • Chilson, P. B., and Coauthors, 2012b: Partly cloudy with a chance of migration: Weather, radars, and aeroecology. Bull. Amer. Meteor. Soc., 93, 669686.

    • Search Google Scholar
    • Export Citation
  • Coronas, J., 1925: Only one shallow depression and one small, but intense, typhoon over the Philippines in October, 1925. Mon. Wea. Rev., 53, 456457.

    • Search Google Scholar
    • Export Citation
  • Coronas, J., 1929: Typhoons and depressions in November, 1929. Mon. Wea. Rev., 57, 525526.

  • Diehl, R. H., Larkin R. P. , and Black J. E. , 2003: Radar observations of bird migration over the Great Lakes. Auk, 120, 278290.

  • Doucette, B. F., 1936: Typhoons and depressions over the Far East, October 1936. Mon. Wea. Rev., 64, 344345.

  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations.Academic Press, 562 pp.

  • Freeman, B., 2003: A fallout of black witches (Ascalapha odorata) associated with Hurricane Claudette. News of the Lepidopterists’ Society, No. 3, Lepidopterists' Society, Round Rock, TX, 71.

  • Frick, W. F., Stepanian P. M. , Kelly J. F. , Howard K. W. , Kuster C. M. , Kunz T. H. , and Chilson P. B. , 2012: Climate and weather impact timing of emergence of bats. PLoS ONE, 7, e42737, doi:10.1371/journal.pone.0042737.

    • Search Google Scholar
    • Export Citation
  • Garriott, E. B., 1902: Forecasts and warnings. Mon. Wea. Rev., 30, 473474.

  • Gauthreaux, S. A., and Belser C. G. , 1998: Displays of bird movements on the WSR-88D: Patterns and quantification. Wea. Forecasting, 13, 453464.

    • Search Google Scholar
    • Export Citation
  • General Weather Service of the United States, 1882: Introduction. Mon. Wea. Rev., 10 (9), 1.

  • Horn, J. W., and Kunz T. H. , 2008: Analyzing NEXRAD Doppler radar images to assess nightly dispersal patterns and population trends in Brazilian free-tailed bats (Tadarida brasiliensis). Integr. Comp. Biol., 48, 2439.

    • Search Google Scholar
    • Export Citation
  • Hurd, W. E., 1923: North Atlantic Ocean. Mon. Wea. Rev., 51, 474476.

  • Hurd, W. E., 1927: North Pacific Ocean. Mon. Wea. Rev., 55, 430431.

  • Hurd, W. E., 1933: North Pacific Ocean, September 1933. Mon. Wea. Rev., 61, 283284.

  • Jones, R., 1999: Seabirds carried inland by Tropical Storm Nora. West. Birds, 30, 185192.

  • Kaufman, K., 1977: The changing seasons: An intimate look at Kathleen and other avian phenomena of autumn, 1976. Amer. Birds, 31, 142152.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Zhang J. , and Howard K. , 2010: A technique to censor biological echoes in radar reflectivity data. J. Appl. Meteor. Climatol., 49, 453462.

    • Search Google Scholar
    • Export Citation
  • Leskinen, M., 2008: Observed polarimetric signals of insects. Proc. Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, Finnish Meteorological Institute, 2.3.

  • Leskinen, M., and Coauthors, 2009: Pest insect immigration warning by an atmospheric dispersion model, weather radars and traps. J. Appl. Entomol., 135, 5567.

    • Search Google Scholar
    • Export Citation
  • Lindsay, P. J., and Mitra S. S. , 2011: Region 10—Marine. Kingbird, 61, 362370.

  • Lowery, G. H., 1946: Evidence of trans-gulf migration. Auk, 63, 175211.

  • May, P. T., Kepert J. D. , and Keenan T. D. , 2008: Polarimetric radar observations of the persistently asymmetric structure of tropical cyclone Ingrid. Mon. Wea. Rev., 136, 616630.

    • Search Google Scholar
    • Export Citation
  • Mayhew, J. R., 1949: Atmospheric pressure and bird flight. Science, 109, 403.

  • McNair, D., 2000: The status of magnificent frigatebirds in the interior of Florida. North Amer. Birds, 54, 1115.

  • Melnikov, V., Leskinen M. , and Koistinen J. , 2010: Spectral polarimetric parameters of radar signals from atmospheric biota. Proc. Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, ERAD, P10.8. [Available online at http://www.erad2010.org/pdf/POSTER/Wednesday/04_Others/09_ERAD2010_0208_extended_modificat.pdf.]

  • Mitra, S. S., 2011: Tropical Storm Irene in New York State. Kingbird, 61, 293298.

  • Mueller, E. A., and Larkin R. P. , 1985: Insects observed using dual-polarization radar. J. Atmos. Oceanic Technol., 2, 4954.

  • O’Neal, B. J., Stafford J. D. , and Larkin R. P. , 2010: Waterfowl on weather radar: Applying ground-truth to classify and quantify bird movements. J. Field Ornithol., 81, 7182.

    • Search Google Scholar
    • Export Citation
  • Park, H., Ryzhkov A. V. , Zrnić D. S. , and Kim K.-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748.

    • Search Google Scholar
    • Export Citation
  • Parry, B., 1930: Appendix I.—Storm conditions encountered by the steamship “Coamo” September 3, 1930. Mon. Wea. Rev., 58, 363.

  • Ridgely, R. S., Allnutt T. F. , Brooks T. , McNicol D. K. , Mehlman D. W. , Young B. E. , and Zook J. R. , 2003: Digital distribution maps of the birds of the Western Hemisphere, version 1.0. NatureServe, 6 pp. [Available online at http://www.natureserve.org/library/birddistribmapsproject.pdf.]

  • Russell, K. R., Mizrahi D. S. , and Gauthreaux S. A. , 1998: Large-scale mapping of purple martin pre-migratory roosts using WSR-88D weather surveillance radar. J. Field Ornithol., 69, 316325.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Zhang P. , Doviak R. , and Kessinger C. , 2002: Discrimination between weather and sea clutter using Doppler and dual-polarization weather radars. Proc. 27th General Assembly of the International Union of Radio Science, Maastricht, Netherlands, International Union of Radio Science, F1.P.3. [Available online at http://www.ursi.org/Proceedings/ProcGA02/papers/p1383.pdf.]

  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , and Zrnić D. S. , 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570.

  • Shusse, Y., Satake M. , Satoh S. , Takahashi N. , Hanado H. , Nakagawa K. , and Iguchi T. , 2009: Polarimetric radar observations of the eyewall of Typhoon Man-yi. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Assoc., P13.23. [Available online at https://ams.confex.com/ams/34Radar/techprogram/paper_155998.htm.]

  • Southern, J., 2011: Briefs for the files. Chat, 76, 1938.

  • Straka, J. M., Zrnić D. S. , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372.

    • Search Google Scholar
    • Export Citation
  • Tannehill, I. R., 1936: Tropical disturbances, June 1936. Mon. Wea. Rev., 64, 204205.

  • Tannehill, I. R., 1938: Tropical disturbances of August 1938. Mon. Wea. Rev., 66, 240241.

  • Thurber, W., 1980: Hurricane Fifi and the 1974 autumn migration in El Salvador. Condor, 82, 212218.

  • Tuck, L., 1968: Laughing gulls (Larus atricilla) and black skimmers (Rynchops nigra) brought to Newfoundland by hurricane. J. Field Ornithol., 39, 200208.

    • Search Google Scholar
    • Export Citation
  • Webster, R. E., Morlan J. , and Roberson D. , 1990: First record of the sooty tern in California. West. Birds, 21, 2532.

  • Williams, B., 2011: Fall 2011 coastal. Virginia Birds, No. 8, Virginia Society of Ornithology, Williamsburg, VA, 23 pp.

  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067.

  • Yandik, W., 2011: Region 8—Hudson-Mohawk. Kingbird, 61, 354356.

  • Young, F. A., 1921: Weather of North America and adjacent oceans. Mon. Wea. Rev., 49, 358359.

  • Zrnić, D. S., and Ryzhkov A. V. , 1998: Observations of insects and birds with a polarimetric radar. IEEE Trans. Geosci. Remote Sens., 36, 661668.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 2 2 2

Polarimetric Radar Observations of Biological Scatterers in Hurricanes Irene (2011) and Sandy (2012)

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
Restricted access

Abstract

Biological scatterers, consisting of birds and insects, may become trapped near the circulation center of tropical cyclones, particularly if a well-developed eyewall is present. These scatterers may be observed using weather radar, where they may appear to the radar operator as areas of light precipitation. Polarimetric radar characteristics of these scatterers, informed by additional observations of known bioscatter, include a combination of very high differential reflectivity (3–7.9 dB) and very low copolar correlation coefficient (0.3–0.8). Polarimetric radar observations of bioscatter are presented for Hurricane Irene (2011) and Hurricane Sandy (2012). In these storms, the bioscatter signature first appeared at the 0.5° elevation angle at a distance of 100–120 km from the radar. The signature appeared on successively higher tilts as the circulation center neared the radar, and its areal coverage in constant altitude plan position indicator (CAPPI) slices was primarily governed by the distribution of convection in the eye and by the timing of landfall. The highest altitude at which the signature appears may represent the inversion level within certain tropical cyclone eyes. For Hurricane Irene, inland observations of oceanic bird species support biological transport. Knowledge of the bioscatter signature has value to meteorologists monitoring tropical cyclones within the range of a polarimetric radar, possible value for estimating inversion height changes within the eyes of well-structured tropical cyclones, and value to biologists who wish to estimate the magnitude of biological transport in tropical cyclones.

Corresponding author address: Matthew S. Van Den Broeke, Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, 306 Bessey Hall, Lincoln, NE 68588-0340. E-mail: mvandenbroeke2@unl.edu

Abstract

Biological scatterers, consisting of birds and insects, may become trapped near the circulation center of tropical cyclones, particularly if a well-developed eyewall is present. These scatterers may be observed using weather radar, where they may appear to the radar operator as areas of light precipitation. Polarimetric radar characteristics of these scatterers, informed by additional observations of known bioscatter, include a combination of very high differential reflectivity (3–7.9 dB) and very low copolar correlation coefficient (0.3–0.8). Polarimetric radar observations of bioscatter are presented for Hurricane Irene (2011) and Hurricane Sandy (2012). In these storms, the bioscatter signature first appeared at the 0.5° elevation angle at a distance of 100–120 km from the radar. The signature appeared on successively higher tilts as the circulation center neared the radar, and its areal coverage in constant altitude plan position indicator (CAPPI) slices was primarily governed by the distribution of convection in the eye and by the timing of landfall. The highest altitude at which the signature appears may represent the inversion level within certain tropical cyclone eyes. For Hurricane Irene, inland observations of oceanic bird species support biological transport. Knowledge of the bioscatter signature has value to meteorologists monitoring tropical cyclones within the range of a polarimetric radar, possible value for estimating inversion height changes within the eyes of well-structured tropical cyclones, and value to biologists who wish to estimate the magnitude of biological transport in tropical cyclones.

Corresponding author address: Matthew S. Van Den Broeke, Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, 306 Bessey Hall, Lincoln, NE 68588-0340. E-mail: mvandenbroeke2@unl.edu
Save