• Bossler, J. D., Campbell J. B. , Mcmaster R. B. , and Rizos C. , 2010: Coordinates and coordinate systems. Manual of Geospatial Science and Technology, 2nd ed. J. D. Bossler et al., Eds., CRC Press, 9–16.

  • Cao, C., and Heidinger A. K. , 2002: Inter-comparison of the longwave infrared channels of MODIS and AVHRR/NOAA-16 using simultaneous nadir observations at orbit intersections. Earth Observing Systems VII, W. L. Barnes, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 4814), 306, doi:10.1117/12.451690.

  • Cao, C., Weinreb M. , and Xu H. , 2004: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol., 21, 537542.

    • Search Google Scholar
    • Export Citation
  • Cao, C., Xu H. , Sullivan J. , McMillin L. , Ciren P. , and Hou Y. , 2005: Intersatellite radiance biases for the High Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from simultaneous nadir observations. J. Atmos. Oceanic Technol., 22, 381395.

    • Search Google Scholar
    • Export Citation
  • Cao, C., Xiong X. , Wu A. , and Wu X. , 2008: Assessing the consistency of AVHRR and MODIS L1B reflectance for generating fundamental climate data records. J. Geophys. Res., 113, D09114, doi:10.1029/2007JD009363.

    • Search Google Scholar
    • Export Citation
  • Cao, C., Uprety S. , Xiong J. , Wu A. , Jing P. , Smith D. , Chander G. , Fox N. , and Ungar S. , 2010: Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites. Can. J. Remote Sens., 36, 498513, doi:10.5589/m10-075.

    • Search Google Scholar
    • Export Citation
  • Cao, C., Deluccia F. , Xiong X. , Wolfe R. , and Weng F. , 2013: Early on-orbit performance of the Visible Infrared Imaging Radiometer Suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens., doi:10.1109/TGRS.2013.2247768, in press.

  • Chander, G., Helder D. L. , Markham B. L. , Dewald J. D. , Kaita E. , Thome K. J. , Micijevic E. , and Ruggles T. A. , 2004: Landsat-5 TM reflective-band absolute radiometric calibration. IEEE Trans. Geosci. Remote Sens.,42, 2747–2760.

  • De Luccia, F., and Coauthors, 2012: Discovery and characterization of on-orbit degradation of the Visible Infrared Imaging Radiometer Suite (VIIRS) rotating telescope assembly (RTA). Earth Observing Systems XVII, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8510), 40, doi:10.1117/12.930544.

  • Folkman, M. A., Pearlman J. , Liao L. B. , and Jarecke P. J. , 2001: EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration. Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4151), 40, doi:10.1117/12.417022.

  • Guenther, B., Xiong X. , Salomonson V. V. , Barnes W. L. , and Young J. , 2002: On-orbit performance of the Earth Observing System Moderate Resolution Imaging spectroradiometer; first year of data. Remote Sens. Environ., 83, 16–30, doi:10.1016/S0034-4257(02)00097-4.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Cao C. , and Sullivan J. T. , 2002: Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res., 107, 4702, doi:10.1029/2001JD002035.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Straka W. C. III, Molling C. C. , Sullivan J. T. , and Wu X. , 2010: Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens., 31, 64936517.

    • Search Google Scholar
    • Export Citation
  • Hutchison, K. D., and Cracknell A. P. , 2005: Visible Infrared Imager Radiometer Suite: A New Operational Cloud Imager. CRC Press, 256 pp.

  • McGuffie, K., and Henderson-Sellers A. , 1985: The diurnal hysteresis of snow albedo. J. Glaciol., 31, 188–189.

  • Pearlman, J. S., Barry P. S. , Segal C. C. , Shepanski J. , Beiso D. , and Carman S. L. , 2003: Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sens., 41, 1160–1173.

    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., and Chen J. , 1993: Calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) after launch. Recent Advances in Sensors, Radiometric Calibration, and Processing of Remotely Sensed Data, P. S. Chavez Jr. and R. A. Schowengerdt, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 1938), 56, doi:10.1117/12.161571.

  • Smith, D. L., Read P. D. , and Mutlow C. T. , 1997: Calibration of the visible/near-infrared channels of the Along-Track Scanning Radiometer-2 (ATSR-2). Sensors, Systems, and Next-Generation Satellites, H. Fujisada, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 3221), 53–62.

  • Staylor, W. F, 1990: Degradation rates of the AVHRR visible channel for the NOAA 6, 7, and 9 spacecraft. J. Atmos. Oceanic Technol.,7, 411–423.

  • Teillet, P. M., Fedosejevs G. , and Thome K. J. , 2004: Spectral band difference effects on radiometric cross-calibration between multiple satellite sensors in the Landsat solar-reflective spectral domain. Sensors, Systems, and Next-Generation Satellites VIII, R. Meynart, S. P. Neeck, and H. Shimoda, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5570), 307, doi:10.1117/12.562709.

  • Thuillier, G., Hersé M. , Labs D. , Foujols T. , Peetermans W. , Gillotay D. , Simon P. C. , and Mandel H. , 2003: The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Solar Physics, 214, 122, doi:10.1023/A:1024048429145.

  • Uprety, S., and Cao C. , 2011: Using the Dome C site to characterize AVHRR near-infrared channel for consistent radiometric calibration. Earth Observing Systems XVI, J. J. Butler, X. Xiong. and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8153), 81531Y, doi:10.1117/12.892481.

  • Uprety, S., and Cao C. , 2012: Radiometric and spectral characterization and comparison of the Antarctic Dome C and Sonoran Desert sites for the calibration and validation of visible and near-infrared radiometers. J. Appl. Remote Sens., 6, 063541, doi:10.1117/1.JRS.6.063541.

    • Search Google Scholar
    • Export Citation
  • Wu, A., Cao C. , and Xiong X. , 2006: Using MODIS to track calibration stability of the AVHRR on NOAA 15-18. Remote Sensing and Modeling of Ecosystems for Sustainability III, W. Gao and S. L. Ustin, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6298), 629812, doi:10.1117/12.681199.

  • Wu, A., Xiong X. , Cao C. , and Angal A. , 2008: Monitoring MODIS calibration stability of visible and near-IR bands from observed top-of-atmosphere BRDF-normalized reflectances over Libyan desert and Antarctic surfaces. Earth Observing Systems XIII, J. J. Butler and J. Xiong, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7081), 708113, doi:10.1117/12.795296.

  • Wu, X., and Sun F. , 2005: Post-launch calibration of GOES Imager visible channel using MODIS. Earth Observing Systems X, J. J. Butler, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5882), 58820N, doi:10.1117/12.615401.

  • Xiong, X., Esposito J. A. , Sun J.-Q. , Pan C. , Guenther B. W. , and Barnes W. L. , 2001: Degradation of MODIS optics and its reflective solar bands calibration. Sensors, Systems, and Next-Generation Satellites V, H. Fujisada, J. B. Lurie, and K. Weber, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4540), 62, doi:10.1117/12.450646.

  • Xiong, X., Sun J. , Barnes W. , Salomonson V. , Esposito J. , Erives H. , and Guenther B. , 2007: Multiyear on-orbit calibration and performance of Terra MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens., 45, 879–889.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., Sun J. , Xie X. , Barnes W. L. , and Saloruonsond V. V. , 2010: On-orbit calibration and performance of Aqua MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens., 48, 535546.

    • Search Google Scholar
    • Export Citation
  • Yamanouchi, T., 1983: Variations of incident solar flux and snow albedo on the solar zenith angle and cloud cover, at Mizuho Station, Antarctica. J. Meteor. Soc. Japan, 61, 879893.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 16
PDF Downloads 16 16 16

Radiometric Intercomparison between Suomi-NPP VIIRS and Aqua MODIS Reflective Solar Bands Using Simultaneous Nadir Overpass in the Low Latitudes

View More View Less
  • 1 * Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | 2 Center for Satellite Applications and Research, NOAA/NESDIS, College Park, Maryland
  • | 3 Sciences and Exploration Directorate, NASA GSFC, Greenbelt, Maryland
  • | 4 University of Maryland, College Park, College Park, Maryland
  • | 5 The Sigma Space Corporation, Lanham, Maryland
Restricted access

Abstract

On-orbit radiometric performance of the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) is studied using the extended simultaneous nadir overpass (SNO-x) approach. Unlike the traditional SNO analysis of data in the high latitudes, this study extends the analysis to the low latitudes—in particular, over desert and ocean sites with relatively stable and homogeneous radiometric properties—for intersatellite comparisons. This approach utilizes a pixel-by-pixel match with an efficient geospatial matching algorithm to map VIIRS data into the Moderate Resolution Imaging Spectroradiometer (MODIS). VIIRS moderate-resolution bands M-1 through M-8 are compared with Aqua MODIS equivalent bands to quantify radiometric bias over the North African desert and over the ocean. Biases exist between VIIRS and MODIS in several bands, primarily because of spectral differences as well as possible calibration uncertainties, residual cloud contamination, and bidirectional reflectance distribution function (BRDF). The impact of spectral differences on bias is quantified by using the Moderate Resolution Atmospheric Transmission (MODTRAN) and hyperspectral measurements from the Earth Observing-1 (EO-1) Hyperion and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). After accounting for spectral differences and bias uncertainties, the VIIRS radiometric bias over desert agrees with MODIS measurements within 2% except for the VIIRS shortwave infrared (SWIR) band M-8, which indicates a nearly 3% bias. Over ocean, VIIRS agrees with MODIS within 2% by the end of January 2013 with uncertainty less than 1%. Furthermore, VIIRS bias relative to MODIS is also computed at the Antarctica Dome C site for validation and the result agrees well within 1% with the bias estimated using SNO-x over desert.

Corresponding author address: Sirish Uprety, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375. E-mail: sirish.uprety@noaa.gov

Abstract

On-orbit radiometric performance of the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) is studied using the extended simultaneous nadir overpass (SNO-x) approach. Unlike the traditional SNO analysis of data in the high latitudes, this study extends the analysis to the low latitudes—in particular, over desert and ocean sites with relatively stable and homogeneous radiometric properties—for intersatellite comparisons. This approach utilizes a pixel-by-pixel match with an efficient geospatial matching algorithm to map VIIRS data into the Moderate Resolution Imaging Spectroradiometer (MODIS). VIIRS moderate-resolution bands M-1 through M-8 are compared with Aqua MODIS equivalent bands to quantify radiometric bias over the North African desert and over the ocean. Biases exist between VIIRS and MODIS in several bands, primarily because of spectral differences as well as possible calibration uncertainties, residual cloud contamination, and bidirectional reflectance distribution function (BRDF). The impact of spectral differences on bias is quantified by using the Moderate Resolution Atmospheric Transmission (MODTRAN) and hyperspectral measurements from the Earth Observing-1 (EO-1) Hyperion and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). After accounting for spectral differences and bias uncertainties, the VIIRS radiometric bias over desert agrees with MODIS measurements within 2% except for the VIIRS shortwave infrared (SWIR) band M-8, which indicates a nearly 3% bias. Over ocean, VIIRS agrees with MODIS within 2% by the end of January 2013 with uncertainty less than 1%. Furthermore, VIIRS bias relative to MODIS is also computed at the Antarctica Dome C site for validation and the result agrees well within 1% with the bias estimated using SNO-x over desert.

Corresponding author address: Sirish Uprety, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375. E-mail: sirish.uprety@noaa.gov
Save