Scanning Doppler Lidar for Input into Short-Term Wind Power Forecasts

Rod Frehlich CIRES, University of Colorado, Boulder, Colorado

Search for other papers by Rod Frehlich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Scanning Doppler lidar is a promising technology for improvements in short-term wind power forecasts since it can scan close to the surface and produce wind profiles at a large distance upstream (15–30 km) if the atmosphere has sufficient aerosol loading and there are no sizable blockages from terrain or large structures. However, successful measurements require a large spatial sampling domain and new estimation algorithms that can perform well in the very weak signal regime. The maximum likelihood (ML) algorithm in the spectral domain and a faster version based on the minimum mean-square-error (MSE) are investigated by numerical simulation and with actual scanning Doppler lidar data from the Lockheed Martin Coherent Technologies WindTracer lidar. In addition, the maximum range can be extended by simultaneous estimation of the wind speed and wind direction from a larger azimuth sector scan if the atmosphere is well behaved. Real-time operation is possible using the spectral data from the WindTracer lidar and a dedicated computer to interface with a data assimilation system. Analysis of the Doppler lidar data in the first few kilometers can be used to extract the turbulence conditions for improvements in real-time wind farm operations.

Deceased.

Corresponding author address: Robert Sharman, Research Applications Laboratory, UCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: sharman@ucar.edu

Abstract

Scanning Doppler lidar is a promising technology for improvements in short-term wind power forecasts since it can scan close to the surface and produce wind profiles at a large distance upstream (15–30 km) if the atmosphere has sufficient aerosol loading and there are no sizable blockages from terrain or large structures. However, successful measurements require a large spatial sampling domain and new estimation algorithms that can perform well in the very weak signal regime. The maximum likelihood (ML) algorithm in the spectral domain and a faster version based on the minimum mean-square-error (MSE) are investigated by numerical simulation and with actual scanning Doppler lidar data from the Lockheed Martin Coherent Technologies WindTracer lidar. In addition, the maximum range can be extended by simultaneous estimation of the wind speed and wind direction from a larger azimuth sector scan if the atmosphere is well behaved. Real-time operation is possible using the spectral data from the WindTracer lidar and a dedicated computer to interface with a data assimilation system. Analysis of the Doppler lidar data in the first few kilometers can be used to extract the turbulence conditions for improvements in real-time wind farm operations.

Deceased.

Corresponding author address: Robert Sharman, Research Applications Laboratory, UCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: sharman@ucar.edu
Save
  • Banakh, V. A., and Smalikho I. N. , 1997: Estimation of the turbulence energy dissipation rate from the pulsed Doppler lidar data. Atmos. Oceanic Opt., 10, 957965.

    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., Werner C. , and Smalikho I. N. , 2001: Remote sensing of clear sky turbulence using Doppler lidar: Numerical simulation. Atmos. Oceanic Opt., 14, 856863.

    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., Smalikho I. N. , Pichugina E. L. , and Brewer W. A. , 2010: Representativeness of measurements of the dissipation rate of turbulence energy by scanning Doppler lidar. Atmos. Oceanic Opt., 23, 4854.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Pichugina Y. L. , and Newsom R. K. , 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Pichugina Y. L. , and Brewer W. A. , 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., Schwartz B. E. , Szoke E. J. , and Koch S. E. , 2004: The value of wind profiler data in U.S. weather forecasting. Bull. Amer. Meteor. Soc., 85, 18711886.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., Jamison S. B. , Moninger W. , Sahm S. , and Schwartz B. , 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and Mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343.

    • Search Google Scholar
    • Export Citation
  • Chan, P. W., 2011: Generation of eddy dissipation rate map at the Hong Kong International Airport based on Doppler lidar data. J. Atmos. Oceanic Technol., 28, 3749.

    • Search Google Scholar
    • Export Citation
  • Davies, F., Collier C. G. , Pearson G. N. , and Bozier K. E. , 2004: Doppler lidar measurements of turbulent structure function over an urban area. J. Atmos. Oceanic Technol., 21, 753761.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., Harris M. , and Banta R. M. , 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteor. Z., 16, 337347.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 1993: Optimal local oscillator field for a monostatic coherent laser radar with a circular aperture. Appl. Opt., 32, 45694577.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 1994: Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets. J. Mod. Opt., 41, 21152129.

  • Frehlich, R., 1996: Simulation of coherent Doppler lidar performance in the weak-signal regime. J. Atmos. Oceanic Technol., 13, 646658.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 1997: Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Oceanic Technol., 14, 5475.

  • Frehlich, R., 1999: Performance of maximum likelihood estimators of mean power and Doppler velocity with a priori knowledge of spectral width. J. Atmos. Oceanic Technol., 16, 17021709.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2000: Simulation of coherent Doppler lidar performance for space-based platforms. J. Appl. Meteor., 39, 245262.

  • Frehlich, R., 2001a: Errors for space-based Doppler lidar wind measurements: Definition, performance, and verification. J. Atmos. Oceanic Technol., 18, 17491771.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2001b: Estimation of velocity error for Doppler lidar measurements. J. Atmos. Oceanic Technol., 18, 16281639.

  • Frehlich, R., 2004: Velocity error for coherent Doppler lidar with pulse accumulation. J. Atmos. Oceanic Technol., 21, 905920.

  • Frehlich, R., 2006: Adaptive data assimilation including the effect of spatial variations in observation error. Quart. J. Roy. Meteor. Soc., 132, 12251257.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2011: The definition of ‘truth’ for numerical weather prediction error statistics. Quart. J. Roy. Meteor. Soc., 137, 8498.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and Kavaya M. J. , 1991: Coherent laser radar performance for general atmospheric refractive turbulence. Appl. Opt., 30, 53255352.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and Yadlowsky M. J. , 1994: Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol., 11, 12171230.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and Cornman L. , 1999: Coherent Doppler lidar signal spectrum with wind turbulence. Appl. Opt., 38, 74567466.

  • Frehlich, R., and Cornman L. , 2002: Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Oceanic Technol., 19, 355366.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and Sharman R. , 2004: Estimates of turbulence from numerical weather prediction model output with applications to turbulence diagnosis and data assimilation. Mon. Wea. Rev., 132, 23082324.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. and Kelley N. , 2008: Measurements of wind and turbulence profiles with scanning Doppler lidar for wind energy applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,1, 42–47.

  • Frehlich, R., Hannon S. , and Henderson S. , 1994: Performance of 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol., 11, 15171528.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Hannon S. , and Henderson S. , 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt., 36, 34913499.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Hannon S. , and Henderson S. , 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor., 86, 233256.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Meillier Y. , Jensen M. L. , Balsley B. , and Sharman R. , 2006: Measurements of boundary layer profiles in an urban environment. J. Appl. Meteor. Climatol., 45, 821837.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Meillier Y. , and Jensen M. L. , 2008: Measurements of boundary layer profiles with in situ sensors and Doppler lidar. J. Atmos. Oceanic Technol., 25, 13281340.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 2005: Conditions contributing to adverse loading of wind turbines in the nocturnal boundary layer: Final report. NREL Rep. NREL/SR-500-37809, 50 pp.

  • Grund, C. J., Banta R. M. , George J. L. , Howell J. N. , Post M. J. , Richter R. A. , and Weickmann A. M. , 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18, 376393.

    • Search Google Scholar
    • Export Citation
  • Hannon, S. M., and Thomson J. A. , 1994: Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar. J. Mod. Opt., 41, 21752196.

    • Search Google Scholar
    • Export Citation
  • Hannon, S. M., and Henderson S. W. , 1995: Wind measurement applications of coherent lidar. Rev. Laser Eng., 23, 124130.

  • Hannon, S. M., Barr K. , Novotny J. , Bass J. , Oliver A. , and Anderson M. , 2008: Large scale wind resource mapping using a state-of-the-art 3D scanning lidar. Proc. European Wind Energy Conf. and Exhibition, Vol. 3, Brussels, Belgium, EWEA, 1743–1762.

  • Helstrom, C., 1968: Statistical Theory of Signal Detection. Pergamon Press, 470 pp.

  • Henderson, S. W., Hale C. P. , Magee J. R. , Kavaya M. J. , and Huffaker A. V. , 1991: Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers. Opt. Lett., 16, 773775.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., Suni P. J. M. , Hale C. P. , Hannon S. M. , Magee J. R. , Bruns D. L. , and Yuen E. H. , 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens., 31, 415.

    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1959: Turbulence: An Introduction to Its Mechanism and Theory. McGraw-Hill, 586 pp.

  • Huffaker, M. R., and Hardesty R. M. , 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE, 84, 181204.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and Finnigan J. J. , 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 302 pp.

  • Kasler, Y., Rahm S. , Simmet R. , and Kuhn M. , 2010: Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar. J. Atmos. Oceanic Technol., 27, 15291532.

    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., Yu J. , Koch G. J. , Amzajerdian F. , Singh U. N. , and Emmitt G. D. , 2007: Requirements and technology advances for global wind measurement with a coherent lidar: A shrinking gap. Lidar Remote Sensing for Environmental Monitoring VIII, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 6681), doi:10.1117/12.737428.

  • Kelley, N. D., Jonkman B. J. , and Scott G. N. , 2006: The Great Plains turbulence environment: Its origins, impact, and simulation. NREL Rep. NREL/CP-500–40176, 24 pp.

  • Koch, G. J., Beyon J. Y. , Barnes B. W. , Petros M. , Yu J. , Amzajerdian F. , Kavaya M. J. , and Singh U. N. , 2007: High-energy 2-μm Doppler lidar for wind measurements. Opt. Eng.,46, 116201, doi:10.1117/1.2802584.

  • Lenschow, D. H., Mann J. , and Kristensen L. , 1994: How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Oceanic Technol., 11, 661673.

    • Search Google Scholar
    • Export Citation
  • Mann, J., and Coauthors, 2009: Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteor. Z., 18, 135140.

    • Search Google Scholar
    • Export Citation
  • Mann, J., Pena A. , Bingol F. , Wagner R. , and Courtney M. S. , 2010: Lidar scanning of momentum flux in and above the atmospheric surface layer. J. Atmos. Oceanic Technol., 27, 959976.

    • Search Google Scholar
    • Export Citation
  • Marquis, M., Wilczak J. , Ahlstrom M. , Sharp J. , Stern A. , Smith J. C. , and Calvert S. , 2011: Forecasting the wind to reach significant penetration levels of wind energy. Bull. Amer. Meteor. Soc., 92, 11591171.

    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., and Hardesty R. M. , 1989: Coherent Doppler lidar for measurements of wind fields. Proc. IEEE, 77, 449462.

  • Mueller, C., Saxen T. , Roberts R. , Wilson J. , Betancourt T. , Dettling S. , Oien N. , and Yee J. , 2003: NCAR Auto-Nowcast system. Wea. Forecasting, 18, 545561.

    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., Illingworth A. J. , Brooks I. M. , Westbrook C. D. , Hogan R. J. , Davies F. , and Brooks B. J. , 2010: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements. J. Atmos. Oceanic Technol., 27, 16521664.

    • Search Google Scholar
    • Export Citation
  • Pearson, G. N., and Collier C. , 1999: A pulsed coherent CO2 lidar for boundary-layer meteorology. Quart. J. Roy. Meteor. Soc., 125, 27032721.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., Tucker S. C. , Banta R. M. , Brewer W. A. , Kelley N. D. , Jonkman B. J. , and Newsom R. K. , 2008: Horizontal-velocity and variance measurements in the stable boundary layer using Doppler lidar: Sensitivity to averaging procedures. J. Atmos. Oceanic Technol., 25, 13071327.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., Teukolsky S. A. , Vetterling W. T. , and Flannery B. P. , 1992: Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 963 pp.

  • Rye, B. J., 2000: Estimate optimization parameters for incoherent backscatter heterodyne lidar including unknown return signal bandwidth. Appl. Opt., 39, 60866096.

    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1993a: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound. IEEE Trans. Geosci. Remote Sens., 31, 1627.

    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1993b: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation. IEEE Trans. Geosci. Remote Sens., 31, 2835.

    • Search Google Scholar
    • Export Citation
  • Saxen, T. R., and Coauthors, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part IV: The White Sands Missile Range Auto-Nowcast system. J. Appl. Meteor. Climatol., 47, 11231139.

    • Search Google Scholar
    • Export Citation
  • Siegman, A. E., 1996: The antenna properties of optical heterodyne receivers. Proc. IEEE, 51, 13501358.

  • Smalikho, I., 2003: Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar. J. Atmos. Oceanic Technol., 20, 276291.

    • Search Google Scholar
    • Export Citation
  • Smalikho, I., Kopp F. , and Rahm S. , 2005: Measurement of atmospheric turbulence by 2-μm Doppler lidar. J. Atmos. Oceanic Technol., 22, 17331747.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., Harris M. , Coffey A. S. , Mikkelsen T. , Jorgensen H. E. , Mann J. , and Danielian R. , 2006: Wind lidar evaluation at the Danish wind test site in Høvsøre. Wind Energy, 9, 8793.

    • Search Google Scholar
    • Export Citation
  • Warner, T., and Coauthors, 2007: The Pentagon Shield field program: Toward critical infrastructure protection. Bull. Amer. Meteor. Soc., 88, 167176.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1979: Estimation of spectral moments of weather echoes. IEEE Trans. Geosci. Electron., 17, 113128.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 937 557 102
PDF Downloads 384 95 7