Field Measurements of Wind Turbine Wakes with Lidars

Giacomo Valerio Iungo Wind Engineering and Renewable Energy Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Giacomo Valerio Iungo in
Current site
Google Scholar
PubMed
Close
,
Yu-Ting Wu Wind Engineering and Renewable Energy Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Yu-Ting Wu in
Current site
Google Scholar
PubMed
Close
, and
Fernando Porté-Agel Wind Engineering and Renewable Energy Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Fernando Porté-Agel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Field measurements of the wake flow produced from a 2-MW Enercon E-70 wind turbine were performed using three scanning Doppler wind lidars. A GPS-based technique was used to determine the position of the wind turbine and the wind lidar locations, as well as the direction of the laser beams. The lidars used in this study are characterized by a high spatial resolution of 18 m, which allows the detailed characterization of the wind turbine wake. Two-dimensional measurements of wind speed were carried out by scanning a single lidar over the vertical symmetry plane of the wake. The mean axial velocity field was then retrieved by averaging 2D scans performed consecutively. To investigate wake turbulence, single lidar measurements were performed by staring the laser beam at fixed directions and using the maximum sampling frequency. From these tests, peaks in the velocity variance are detected within the wake in correspondence of the turbine top tip height; this enhanced turbulence could represent a source of dangerous fatigue loads for downstream turbines. The spectral density of the measured velocity fluctuations shows a clear inertial-range scaling behavior. Then, simultaneous measurements with two lidars were performed in order to characterize both the axial and the vertical velocity components. For this setup, the two velocity components were retrieved only for measurement points for which the two laser beams crossed nearly at a right angle. Statistics were computed over the sample set for both velocity components, and they showed strong flow fluctuations in the near-wake region at turbine top tip height, with a turbulence intensity of about 30%.

Corresponding author address: G. V. Iungo, Wind Engineering and Renewable Energy Laboratory (WIRE), École Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland. E-mail: valerio.iungo@epfl.ch

Abstract

Field measurements of the wake flow produced from a 2-MW Enercon E-70 wind turbine were performed using three scanning Doppler wind lidars. A GPS-based technique was used to determine the position of the wind turbine and the wind lidar locations, as well as the direction of the laser beams. The lidars used in this study are characterized by a high spatial resolution of 18 m, which allows the detailed characterization of the wind turbine wake. Two-dimensional measurements of wind speed were carried out by scanning a single lidar over the vertical symmetry plane of the wake. The mean axial velocity field was then retrieved by averaging 2D scans performed consecutively. To investigate wake turbulence, single lidar measurements were performed by staring the laser beam at fixed directions and using the maximum sampling frequency. From these tests, peaks in the velocity variance are detected within the wake in correspondence of the turbine top tip height; this enhanced turbulence could represent a source of dangerous fatigue loads for downstream turbines. The spectral density of the measured velocity fluctuations shows a clear inertial-range scaling behavior. Then, simultaneous measurements with two lidars were performed in order to characterize both the axial and the vertical velocity components. For this setup, the two velocity components were retrieved only for measurement points for which the two laser beams crossed nearly at a right angle. Statistics were computed over the sample set for both velocity components, and they showed strong flow fluctuations in the near-wake region at turbine top tip height, with a turbulence intensity of about 30%.

Corresponding author address: G. V. Iungo, Wind Engineering and Renewable Energy Laboratory (WIRE), École Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland. E-mail: valerio.iungo@epfl.ch
Save
  • Aitken, M. L., Rhodes M. E. , and Lundquist J. K. , 2012: Performance of a wind-profiling lidar in the region of wind turbine rotor disks. J. Atmos. Oceanic Technol., 29, 347355.

    • Search Google Scholar
    • Export Citation
  • Alfredsson, P. H., Bark F. H. , and Dahlberg J. A. , 1980: Some properties of the wake behind horizontal axis wind turbines. Proc. Third Int. Symp. on Wind Energy Systems, Lyngby, Denmark, BHRA Fluid Engineering, 469–484.

  • Alfredsson, P. H., Dahlberg J. A. , and Vermeulen P. E. J. , 1982: A comparison between predicted and measured data from wind turbine wakes. Wind Eng., 6, 149155.

    • Search Google Scholar
    • Export Citation
  • Alinot, C., and Masson C. , 2002: Aerodynamic simulations of wind turbines operating in atmospheric boundary layer with various thermal stratifications. Proc. ASME Wind Energy Symp., Reno, NV, ASME, WIND2002-42, 206–215.

  • Amar, F. B., Elamouri M. , and Dhifaoui R. , 2008: Energy assessment of the first wind farm section of Sidi Daoud, Tunisia. Renewable Energy, 33, 23112321.

    • Search Google Scholar
    • Export Citation
  • Belu, R., and Koracin D. , 2009: Wind characteristics and wind energy potential in western Nevada. Renewable Energy, 34, 22462251.

  • Builtjes, P. J. H., 1978: The interaction of windmill wakes. Proc. Second Int. Symp. on Wind Energy Systems, Amsterdam, Netherlands, BHRA, B5-49–B5-58.

  • Cal, R. B., Lebron J. , Castillo L. , Kang H. S. , and Meneveau C. , 2010: Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J. Renewable Sustainable Energy,2, 013106, doi:10.1063/1.3289735.

  • Calaf, M., Meneveau C. , and Meyers J. , 2010: Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids,22, 015110, doi:10.1063/1.3291077.

  • Calhoun, R., Heap R. , Princevac M. , Newsom R. , Fernando H. , and Lingon D. , 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J. Appl. Meteor. Climatol., 45, 11161126.

    • Search Google Scholar
    • Export Citation
  • Chamorro, L. P., and Porté-Agel F. , 2009: A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects. Bound.-Layer Meteor., 132, 129149.

    • Search Google Scholar
    • Export Citation
  • Chamorro, L. P., and Porté-Agel F. , 2010: Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study. Bound.-Layer Meteor., 136, 515533.

    • Search Google Scholar
    • Export Citation
  • Chamorro, L. P., and Porté-Agel F. , 2011: Turbulent flow inside and above a wind farm: A wind-tunnel study. Energies, 4, 19161936.

  • Chan, P. W., and Shao A. M. , 2007: Depiction of complex airflow near Hong Kong International Airport using a Doppler lidar with a two-dimensional wind retrieval technique. Meteor. Z., 16, 491504.

    • Search Google Scholar
    • Export Citation
  • Crespo, A., Hernández J. , and Frandsen S. , 1999: Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy, 2 (1), 124.

    • Search Google Scholar
    • Export Citation
  • Delaunay, B., 1934: Sur la sphère vide. Izv. Akad. Nauk SSSR, Otd. Mat. Estestv. Nauk, 7, 793800.

  • Drechsel, S., Chong M. , Mayr G. , Weissmann M. , Calhoun R. , and Dörnbrack A. , 2009: Three-dimensional wind retrieval: Application of MUSCAT to dual Doppler lidar. J. Atmos. Oceanic Technol., 26, 635646.

    • Search Google Scholar
    • Export Citation
  • El Kasmi, A., and Masson C. , 2008: An extended k–ɛ model for turbulent flow through horizontal-axis wind turbines. J. Wind Eng. Ind. Aerodyn., 96, 103122.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., Harris M. , and Banta R. , 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteor. Z., 16, 337347.

    • Search Google Scholar
    • Export Citation
  • Frelich, R., Hannon S. M. , and Henderson S. W. , 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor., 86, 233256.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., Xu M. , and Eberhard W. L. , 1992: Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data. J. Geophys. Res., 97 (D17), 409423.

    • Search Google Scholar
    • Export Citation
  • Gomez-Elvira, R., Crespo A. , Migoya E. , Manuel F. , and Hernandez J. , 2005: Anisotropy of turbulence in wind turbine wakes. J. Wind Eng. Ind. Aerodyn., 93, 797814.

    • Search Google Scholar
    • Export Citation
  • Green, D. R. R., 1986: Near wake wind tunnel studies. Loughborough University Tech. Rep. ETSU-WN-5040/1, 60 pp.

  • Green, D. R. R., and Alexander A. J. , 1985: Measurement of velocity and turbulence profiles in flow situations relevant to windturbine performance. Loughborough University Tech. Rep. ETSU-WN–5003/1, Government Document E/5A/CON/5003/177/026, 262 pp.

  • Hill, M., Calhoun R. , Fernando H. , Wieser A. , Dörnbrack A. , Weissmann M. , Mayr G. , and Newsom R. , 2010: Coplanar Doppler lidar retrieval of rotors from T-REX. J. Atmos. Sci., 67, 713729.

    • Search Google Scholar
    • Export Citation
  • Jimenez, A., Crespo A. , Migoya E. , and Garcia J. , 2007: Advances in large-eddy simulation of a wind turbine wake. J. Phys.,75, 012041, doi:10.1088/1742-6596/75/1/012041.

  • Jimenez, A., Crespo A. , Migoya E. , and Garcia J. , 2008: Large-eddy simulation of spectral coherence in a wind turbine wake. Environ. Res. Lett.,3, 015004, doi:10.1088/1748-9326/3/1/015004.

  • Kasler, Y., Rahm S. , Simmet R. , and Kühn M. , 2010: Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar. J. Atmos. Oceanic Technol., 27, 15291532.

    • Search Google Scholar
    • Export Citation
  • Kongara, S., Calhoun R. , Choukulkar A. , and Boldi M. , 2010: Velocity retrieval for coherent Doppler lidar. Int. J. Remote Sens., 33, 35963613.

    • Search Google Scholar
    • Export Citation
  • Lin, C., Xia Q. , and Calhoun R. , 2008: Retrieval of urban boundary layer structures from Doppler lidar data. Part II: Proper orthogonal decomposition. J. Atmos. Sci., 65, 2142.

    • Search Google Scholar
    • Export Citation
  • Lu, H., and Porté-Agel F. , 2010: A modulated gradient model for large-eddy simulation: Application to a neutral atmospheric boundary layer. Phys. Fluids,22, 015109, doi:10.1063/1.3291073.

  • Lu, H., and Porté-Agel F. , 2011: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids,23, 065101, doi:10.1063/1.3589857.

  • Mann, J., and Coauthors, 2009: Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteor. Z., 18, 135140.

    • Search Google Scholar
    • Export Citation
  • Markfort, C. D., Zhang W. , and Porté-Agel F. , 2012: Turbulent flow and scalar transport through and over aligned and staggered wind farms. J. Turbul., 13, N33, doi:10.1080/14685248.2012.709635.

    • Search Google Scholar
    • Export Citation
  • Medici, D., and Alfredsson P. , 2006: Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy, 9, 219236.

    • Search Google Scholar
    • Export Citation
  • Milborrow, D. J. and Ross J. N. , 1983: The influence of turbulence and rotor thrust on wind turbine wake characteristics. Central Electricity Research Laboratories Tech. Memo. TPRD/L/AP/0098/M83, 17 pp.

  • Newsom, R., Ligon D. , Calhoun R. , Heap R. , Cregan E. , and Pricevac M. , 2005: Retrieval of microscale wind and temperature fields from single- and dual-Doppler lidar data. J. Appl. Meteor., 44, 13241345.

    • Search Google Scholar
    • Export Citation
  • Newsom, R., Calhoun R. , Lingon R. , and Allwine J. , 2008: Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Bound.-Layer Meteor., 127, 111130.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., Wu Y.-T. , Lu H. , and Conzemius R. , 2011: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerodyn., 99, 154168.

    • Search Google Scholar
    • Export Citation
  • Retallack, C., Calhoun R. , Fernando H. J. S. , Rayner K. , Stuart A. , Sutton J. , and Hibberd M. F. , 2010: Flow and pollution transport during Wagerup 2006: A case study. Meteor. Appl., 17, 269278.

    • Search Google Scholar
    • Export Citation
  • Ross, J. N., 1979: Measurements of velocity in wind tunnel studies of windmill arrays using laser anemometry. Central Electricity Research Laboratories Tech. Rep. LM/Phys./133, 5 pp.

  • Ross, J. N., and Ainslie J. , 1981: Wake measurements in clusters of model wind turbines using laser Doppler anemometry. Proc. Third BWEA Wind Energy Conf., Cranfield, United Kingdom, British Wind Energy Association, 17284.

  • Sathe, A., Mann J. , Gottschall J. , and Courtney M. , 2011: Can wind lidars measure turbulence? J. Atmos. Oceanic Technol., 28, 853868.

    • Search Google Scholar
    • Export Citation
  • Sezer-Uzol, N., and Long L. N. , 2006: 3-D time-accurate CFD simulations of wind turbine rotor flow fields. Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, 2006–0934, 23 pp. [Available online at http://nsezeruzol.etu.edu.tr/publications/AIAA06-394.pdf.]

  • Sørensen, J. N., Michelsen J. A. , and Schreck S. , 2002: Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft × 120 ft wind tunnel. Wind Energy, 5, 151169.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Talmon, A. M., 1985: The wake of a horizontal axis wind turbine model, measurements in uniform approach flow and in a simulated boundary layer. TNO Division of Technology for Society Tech. Rep. 8501021.

  • Tongchipakdee, C., Benjanirat S. , and Sankar L. N. , 2005: Numerical simulation of the aerodynamics of horizontal axis wind turbines under yawed flow conditions. J. Sol. Energy Eng., 127, 464475.

    • Search Google Scholar
    • Export Citation
  • Vermeer, L. J., Sørensen J. N. , and Crespo A. , 2003: Wind turbine wake aerodynamics. Prog. Aerosp. Sci., 39, 467510.

  • Vermeulen, P. E. J., and Builtjes P. J. H. , 1982: Turbulence measurements in simulated wind turbine clusters. TNO Division of Technology for Society Tech. Rep. 8203003, 12 pp.

  • Wagner, R., Antoniou I. , Pedersen S. M. , Courtney M. S. , and Jorgensen H. E. , 2009: The influence of the wind speed profile on wind turbine performance measurements. Wind Energy, 12, 348363.

    • Search Google Scholar
    • Export Citation
  • Welch, P. D., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust., AU-15, 7073.

    • Search Google Scholar
    • Export Citation
  • Wu, Y.-T., and Porté-Agel F. , 2011: Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations. Bound.-Layer Meteor., 138, 345366.

    • Search Google Scholar
    • Export Citation
  • Wu, Y.-T., and Porté-Agel F. , 2013: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects. Bound.-Layer Meteor., doi:10.1007/s10546-012-9757-y, in press.

    • Search Google Scholar
    • Export Citation
  • Xia, Q., Lin C. , Calhoun R. , and Newsom R. , 2008: Retrieval of urban boundary layer structures from Doppler lidar data. Part I: Accuracy assessment. J. Atmos. Sci., 65, 320.

    • Search Google Scholar
    • Export Citation
  • Xu, G., and Sankar L. N. , 2000: Computational study of horizontal axis wind turbines. J. Sol. Energy Eng., 122, 3539.

  • Zhang, W., Markfort C. D. , and Porté-Agel F. , 2012: Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer. Exp. Fluids, 52, 12191235, doi:10.1007/s00348-011-1250-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Markfort C. D. , and Porté-Agel F. , 2013: Wind-turbine wakes in a convective boundary layer: A wind-tunnel study. Bound.-Layer Meteor., 146, 161179, doi:10.1007/s10546-012-9751-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1467 415 26
PDF Downloads 933 260 28