An Equilibrator System to Measure Dissolved Oxygen and Its Isotopes

Lauren Elmegreen Rafelski Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Lauren Elmegreen Rafelski in
Current site
Google Scholar
PubMed
Close
,
Bill Paplawsky Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Bill Paplawsky in
Current site
Google Scholar
PubMed
Close
, and
Ralph F. Keeling Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ralph F. Keeling in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An equilibrator is presented that is designed to have a sufficient equilibration time even for insoluble gases, and to minimize artifacts associated with not equilibrating to the total gas tension. A gas tension device was used to balance the pressure inside the equilibrator with the total gas tension. The equilibrator has an e-folding time of 7.36 ± 0.74 min for oxygen and oxygen isotopes, allowing changes on hourly time scales to be easily resolved. The equilibrator delivers “equilibrated” air at a flow rate of 3 mL min−1 to an isotope ratio mass spectrometer. The high gas sampling flow rate would allow the equilibrator to be interfaced with many potential devices, but further development may be required for use at sea. This system was tested at the Scripps Institution of Oceanography pier, in La Jolla, California. A mathematical model validated with performance tests was used to assess the sensitivity of the equilibrated air composition to headspace pressure and makeup gas composition. Parameters in this model can be quantified to establish corrections under different operating conditions. For typical observed values, under the operating conditions presented here, the uncertainty in the measurement due to the equilibrator system is 2.2 per mil for δ(O2/N2), 1.5 per mil for δ(O2/Ar), 0.059 per mil for δ18O, and 0.0030 per mil for Δ17O.

Corresponding author address: Lauren Rafelski, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0244. E-mail: lauren.rafelski@gmail.com

Abstract

An equilibrator is presented that is designed to have a sufficient equilibration time even for insoluble gases, and to minimize artifacts associated with not equilibrating to the total gas tension. A gas tension device was used to balance the pressure inside the equilibrator with the total gas tension. The equilibrator has an e-folding time of 7.36 ± 0.74 min for oxygen and oxygen isotopes, allowing changes on hourly time scales to be easily resolved. The equilibrator delivers “equilibrated” air at a flow rate of 3 mL min−1 to an isotope ratio mass spectrometer. The high gas sampling flow rate would allow the equilibrator to be interfaced with many potential devices, but further development may be required for use at sea. This system was tested at the Scripps Institution of Oceanography pier, in La Jolla, California. A mathematical model validated with performance tests was used to assess the sensitivity of the equilibrated air composition to headspace pressure and makeup gas composition. Parameters in this model can be quantified to establish corrections under different operating conditions. For typical observed values, under the operating conditions presented here, the uncertainty in the measurement due to the equilibrator system is 2.2 per mil for δ(O2/N2), 1.5 per mil for δ(O2/Ar), 0.059 per mil for δ18O, and 0.0030 per mil for Δ17O.

Corresponding author address: Lauren Rafelski, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0244. E-mail: lauren.rafelski@gmail.com
Save
  • Angert, A., Rachmilevitch S. , Barkan E. , and Luz B. , 2003: Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O2. Global Biogeochem. Cycles, 17, 1030, doi:10.1029/2002GB001933.

    • Search Google Scholar
    • Export Citation
  • Barkan, E., and Luz B. , 2005: High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun. Mass Spectrom., 19, 37373742.

    • Search Google Scholar
    • Export Citation
  • Bender, M. L., 1990: The δ18O of dissolved O2 in seawater: A unique tracer of circulation and respiration in the deep sea. J. Geophys. Res., 95 (C12), 22 24322 252.

    • Search Google Scholar
    • Export Citation
  • Bender, M. L., and Grande K. D. , 1987: Production, respiration, and the isotope geochemistry of O2 in the upper water column. Global Biogeochem. Cycles, 1, 4959.

    • Search Google Scholar
    • Export Citation
  • Benson, B. B., and Krause D. Jr., 1980: The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere. 1. Oxygen. Limnol. Oceanogr., 25, 662671.

    • Search Google Scholar
    • Export Citation
  • Cassar, N., Barnett B. A. , Bender M. L. , Kaiser J. , Hamme R. C. , and Tilbrook B. , 2009: Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry. Anal. Chem., 81, 18551861.

    • Search Google Scholar
    • Export Citation
  • Copin-Montegut, C., 1985: A method for the continuous determination of the partial pressure of carbon dioxide in the upper ocean. Mar. Chem., 17, 1321.

    • Search Google Scholar
    • Export Citation
  • Emerson, S., Stump C. , Wilbur D. , and Quay P. , 1999: Accurate measurement of O2, N2 and Ar gases in water and the solubility of N2. Mar. Chem., 64, 337347.

    • Search Google Scholar
    • Export Citation
  • Frankignoulle, M., Borges A. , and Biondo R. , 2001: A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Res., 35, 13441347.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., and Gordon L. I. , 1992: Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr., 37, 13071312.

  • Guéguen, C., and Tortell P. D. , 2008: High-resolution measurement of Southern Ocean CO2 and O2/Ar by membrane inlet mass spectrometry. Mar. Chem., 108, 184194.

    • Search Google Scholar
    • Export Citation
  • Hendricks, M. B., Bender M. L. , and Barnett B. A. , 2004: Net and gross O2 production in the Southern Ocean from measurements of biological O2 saturation and its triple isotope composition. Deep-Sea Res. I, 51, 15411561.

    • Search Google Scholar
    • Export Citation
  • Johnson, J. E., 1999: Evaluation of a seawater equilibrator for shipboard analysis of dissolved oceanic trace gases. Anal. Chim. Acta, 395, 119132.

    • Search Google Scholar
    • Export Citation
  • Juranek, L. W., and Quay P. D. , 2005: In vitro and in situ gross primary and net community production in the North Pacific Subtropical Gyre using labeled and natural abundance isotopes of dissolved O2. Global Biogeochem. Cycles, 19, GB3009, doi:10.1029/2004GB002384.

    • Search Google Scholar
    • Export Citation
  • Kaiser, J., Reuer M. K. , Barnett B. , and Bender M. L. , 2005: Marine productivity estimates from continuous O2/Ar ratio measurements by membrane inlet mass spectrometry. Geophys. Res. Lett., 32, L19605, doi:10.1029/2005GL023459.

    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., Blaine T. , Paplawsky B. , Katz L. , Atwood C. , and Brockwell T. , 2004: Measurement of changes in atmospheric Ar/N2 ratio using a rapid-switching, single-capillary mass spectrometer system. Tellus, 56B, 322338.

    • Search Google Scholar
    • Export Citation
  • Knox, M., Quay P. D. , and Wilbur D. , 1992: Kinetic isotopic fractionation during air–water gas transfer of O2, N2, CH4, and H2. J. Geophys. Res., 97 (C12), 20 33520 343.

    • Search Google Scholar
    • Export Citation
  • Körtzinger, A., Thomas H. , Schneider B. , Gronau N. , Mintrop L. , and Duinker J. C. , 1996: At-sea intercomparison of two newly designed underway pCO2 systems—Encouraging results. Mar. Chem., 52, 133145.

    • Search Google Scholar
    • Export Citation
  • Levine, N. M., Bender M. L. , and Doney S. C. , 2009: The δ18O of dissolved O2 as a tracer of mixing and respiration in the mesopelagic ocean. Global Biogeochem. Cycles, 23, GB1006, doi:10.1029/2007GB003162.

    • Search Google Scholar
    • Export Citation
  • Luz, B., and Barkan E. , 2000: Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science, 288, 20282031.

    • Search Google Scholar
    • Export Citation
  • McNeil, C., Katz D. , Wanninkhof R. , and Johnson B. , 2005: Continuous shipboard sampling of gas tension, oxygen and nitrogen. Deep-Sea Res. I, 52, 17671785.

    • Search Google Scholar
    • Export Citation
  • McNeil, C., D’Asaro E. , Johnson B. , and Horn M. , 2006: A gas tension device with response times of minutes. J. Atmos. Oceanic Technol., 23, 15391558.

    • Search Google Scholar
    • Export Citation
  • Murphy, P. P., Nojiri Y. , Fujinuma Y. , Wong C. S. , Zeng J. , Kimoto T. , and Kimoto H. , 2001: Measurements of surface seawater fCO2 from volunteer commercial ships: Techniques and experiences from Skaugran. J. Atmos. Oceanic Technol., 18, 17191734.

    • Search Google Scholar
    • Export Citation
  • Quay, P. D., Emerson S. , Wilbur D. O. , and Stump C. , 1993: The δ18O of dissolved O2 in the surface waters of the subarctic Pacific: A tracer of biological productivity. J. Geophys. Res., 98 (C5), 84478458.

    • Search Google Scholar
    • Export Citation
  • Quiñones-Rivera, Z. J., Wissel B. , Justić D. , and Fry B. , 2007: Partitioning oxygen sources and sinks in a stratified, eutrophic coastal ecosystem using stable oxygen isotopes. Mar. Ecol. Prog. Ser., 342, 6983.

    • Search Google Scholar
    • Export Citation
  • Reuer, M. K., Barnett B. A. , Bender M. L. , Falkowski P. G. , and Hendricks M. B. , 2007: New estimates of Southern Ocean biological production rates from O2/Ar ratios and the triple isotope composition of O2. Deep-Sea Res. I, 54, 951974.

    • Search Google Scholar
    • Export Citation
  • Sarma, V. V. S. S., Abe O. , Hashimoto S. , Hinuma A. , and Saino T. , 2005: Seasonal variations in triple oxygen isotopes and gross oxygen production in the Sagami Bay, central Japan. Limnol. Oceanogr., 50, 544552.

    • Search Google Scholar
    • Export Citation
  • Schneider, B., Kremling K. , and Duinker J. C. , 1992: CO2 partial pressure in northeast Atlantic and adjacent shelf water: Processes and seasonal variability. J. Mar. Syst., 3, 453463.

    • Search Google Scholar
    • Export Citation
  • Schneider, B., Sadkowiak B. , and Wachholz F. , 2007: A new method for continuous measurements of O2 in surface water in combination with pCO2 measurements: Implications for gas phase equilibration. Mar. Chem., 103, 163171.

    • Search Google Scholar
    • Export Citation
  • Stanley, R. H. R., Kirkpatrick J. B. , Cassar N. , Barnett B. A. , and Bender M. L. , 2010: Net community production and gross primary production rates in the western equatorial Pacific. Global Biogeochem. Cycles, 24, GB4001, doi:10.1029/2009GB003651.

    • Search Google Scholar
    • Export Citation
  • Thiemens, M. H., Jackson T. , Zipf E. C. , Erdman P. W. , and van Egmond C. , 1995: Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere. Science, 270, 969972.

    • Search Google Scholar
    • Export Citation
  • Tortell, P. D., 2005: Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol. Oceanogr. Methods, 3, 2437.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97 (C5), 73737382.

  • Weiss, R. F., and Price B. A. , 1980: Nitrous oxide solubility in water and seawater. Mar. Chem., 8, 347359.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 851 472 118
PDF Downloads 443 151 16