• Augustine, J. A., DeLuisi J. J. , and Long C. N. , 2000: SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81, 23412358.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53, 22892303.

    • Search Google Scholar
    • Export Citation
  • Bloom, S., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system–version 4. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2005-104606, Vol. 26, 165 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050175690_2005173043.pdf.]

  • Chambers, L. H., Wielicki B. A. , and Loeb N. G. , 2001: Shortwave flux from satellite-measured radiance: A theoretical study over marine boundary layer clouds. J. Appl. Meteor., 40, 21442161.

    • Search Google Scholar
    • Export Citation
  • Charlock, T. P., and Coauthors, 1997: Compute surface and atmospheric fluxes (system 5.0). CERES Algorithm Theoretical Basis Document, Release 2.2, 84 pp. [Available online at http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s5.0.pdf.]

  • Charlock, T. P., Rose F. G. , Rutan D. A. , Jin Z. , and Kato S. , 2006: The global surface and atmosphere radiation budget: An assessment of accuracy with 5 years of calculations and observations. Preprints, 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 10.5. [Available online at https://ams.confex.com/ams/Madison2006/techprogram/paper_112984.htm.]

  • Clough, S. A., Iacono M. J. , and Moncet J.-L. , 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97 (D14), 15 76115 785.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., Rasch P. J. , Eaton B. E. , Khattatov B. V. , Lamarque J.-F. , and Zender C. S. , 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106 (D7), 73137336.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and Liou K.-N. , 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025.

  • Fu, Q., Lesins G. , Higgins J. , Charlock T. , Chylek P. , and Michalsky J. , 1998: Broadband water vapor absorption of solar radiation tested using ARM data. Geophys. Res. Lett., 25, 11691172.

    • Search Google Scholar
    • Export Citation
  • Green, R., and Wielicki B. A. , 1997: Convolution of imager cloud properties with CERES footprint point spread function (system 4.4). CERES Algorithm Theoretical Basis Document, Release 4.0, 6 pp. [Available online at http://ceres.larc.nasa.gov/documents/validation/pdf/ceresval_r4.0_ss4.4.pdf.]

  • Gupta, S. K., Kratz D. P. , Stackhouse P. W. Jr., and Wilber A. C. , 2001: The Langley parameterized shortwave algorithm (LPSA) for surface radiation budget studies. NASA Tech. Publ. NASA/TP-2001211272, Version 1.0, 31 pp.

  • Gupta, S. K., Kratz D. P. , Wilber A. C. , and Nguyen L. C. , 2004: Validation of parameterized algorithms used to derive TRMM-CERES surface radiative fluxes. J. Atmos. Oceanic Technol., 21, 742752.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., Kratz D. P. , Stackhouse P. W. , Wilber A. C. , Zhang T. P. , and Sothcott V. E. , 2010: Improvement of surface longwave flux algorithms used in CERES processing. J. Appl. Meteor. Climatol., 49, 15791589.

    • Search Google Scholar
    • Export Citation
  • Hess, M., Koepke P. , and Schult I. , 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844.

    • Search Google Scholar
    • Export Citation
  • Ignatov, A., and Stowe L. , 2000: Physical basis, premises, and self-consistency checks of aerosol retrievals from TRMM VIRS. J. Appl. Meteor., 39, 22592277.

    • Search Google Scholar
    • Export Citation
  • Inamdar, A. K., and Ramanathan V. , 1997: On monitoring the atmospheric greenhouse effect from space. Tellus, 49B, 216230.

  • Jin, Z., Charlock T. P. , Smith W. L. Jr., and Rutledge K. , 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31, L22301, doi:10.1029/2004GL021180.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Ackerman T. , Mather J. , and Clothiaux E. , 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109121.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Rose F. G. , and Charlock T. P. , 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22, 146164.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Hinkelman L. M. , and Cheng A. , 2006: Estimate of satellite-derived cloud optical thickness and effective radius errors and their effect on computed domain-averaged irradiances. J. Geophys. Res., 111, D17201, doi:10.1029/2005JD006668.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., and Rose F. G. , 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 61, 8395.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., Gupta S. K. , Wilber A. C. , and Sothcott V. E. , 2010: Validation of the CERES Edition 2B surface-only flux algorithms. J. Appl. Meteor. Climatol., 49, 164180.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Várnai T. , and Winker D. M. , 1998: Influence of subpixel-scale cloud-top structure on reflectances from overcast stratiform cloud layers. J. Atmos. Sci., 55, 29602973.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Priestley K. J. , Kratz D. P. , Geier E. B. , Green R. N. , Wielicki B. A. , Hinton P. , and Nolan S. K. , 2001: Determination of unfiltered radiances from the clouds and the Earth’s Radiant Energy System instrument. J. Appl. Meteor., 40, 822835.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Kato S. , Loukachine K. , and Manalo-Smith N. , 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Kato S. , Loukachine K. , Manalo-Smith N. , and Doelling D. R. , 2007: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System on the Terra satellite. Part II: Validation. J. Atmos. Oceanic Technol., 24, 564384.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., Wen G. , Coakley J. A. Jr., Remer L. A. , Loeb N. G. , and Cahalan R. F. , 2008: A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J. Geophys. Res., 113, D14S17, doi:10.1029/2007JD009196.

    • Search Google Scholar
    • Export Citation
  • Michalsky, J. J., and Coauthors, 2005: Toward the development of a diffuse horizontal shortwave irradiance working standard. J. Geophys. Res., 110, D06107, doi:10.1029/2004JD005265.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 1995: Cloud optical property retrieval (system 4.3). Cloud analyses and determination of improved top of atmosphere fluxes (subsystem 4), CERES Science Team, Eds., Vol. 3, CERES Algorithm Theoretical Basis Document, NASA Reference Publ. 1376, 135–176. [Available online at http://www-pm.larc.nasa.gov/ceres/pub/journals/Minnis.etal.95.III.pdf.]

  • Minnis, P., Gambheer A. V. , and Doelling D. R. , 2004: Azimuthal anisotropy of longwave and infrared window radiances from the Clouds and the Earth’s Radiant Energy System on the Tropical Rainfall Measuring Mission and Terra satellites. J. Geophys. Res., 109, D08202, doi:10.1029/2003JD004471.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011a: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011b: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 44014430, doi:10.1109/TGRS.2011.2144602.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., King M. D. , Schaaf C. B. , and Platnick S. , 2008: MODIS-derived spatially complete surface albedo products: Spatial and temporal pixel distribution and zonal averages. J. Appl. Meteor. Climatol., 47, 28792894.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate change research. Bull. Amer. Meteor. Soc., 79, 21152136.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and Barker H. W. , 1999: Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301330.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973.

  • Rossow, W. B., and Zhang Y.-C. , 1995: Calculation of surface and top of atmosphere fluxes from physical quantities based on ISCCP data sets: 2. Validation and first results. J. Geophys. Res., 100 (D1), 11671197.

    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., Rose F. G. , Smith N. , Charlock T. P. , 2001: Validation data set for CERES Surface and Atmospheric Radiation Budget (SARB). WCRP/GEWEX News, No. 1, International GEWEX Project Office, Silver Spring, MD, 11–12.

  • Rutan, D. A., Rose F. G. , Roman M. , Manalo-Smith N. , Schaaf C. , and Charlock T. , 2009: Development and assessment of broadband surface albedo from Clouds and the Earth’s Radiant Energy System clouds and radiation swath data product. J. Geophys. Res., 114, D08125, doi:10.1029/2008JD010669.

    • Search Google Scholar
    • Export Citation
  • Salomon, J. G., Schaaf C. , Strahler A. H. , Gao F. , and Jin Y. , 2006: Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the Aqua and Terra platforms. IEEE Trans. Geosci. Remote Sens., 44, 15551565.

    • Search Google Scholar
    • Export Citation
  • Smith, G. L., and Green R. N. , 1981: Deconvolution of wide field-of-view radiometer measurements of Earth-emitted radiation. Part I: Theory. J. Atmos. Sci., 38, 461473.

    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., and Coauthors, 1988: Shortwave radiation. Vol. 1, Angular radiation models for the earth-atmosphere system, NASA Reference Publ. RP-1184, 147 pp.

  • Tegen, I., and Lacis A. A. , 1996: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101 (D14), 19 23719 244.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., and Marshak A. , 2001: Statistical analysis of the uncertainties in cloud optical depth retrievals caused by three-dimensional relative effects. J. Atmos. Sci., 58, 15401548.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for Special Sensor Microwave/Imager. J. Geophys. Res., 102 (C4), 87038718.

  • Wielicki, B. A., Cess R. D. , King M. D. , Randall D. A. , and Harrison E. F. , 1995: Mission to planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76, 21252153.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Barkstrom B. R. , Harrison E. F. , Lee R. B. III, Smith G. L. , and Cooper J. E. , 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868.

    • Search Google Scholar
    • Export Citation
  • Yang, S.-K., Zhou S. , and Miller A. J. , cited 1998: SMOBA: A 3-dimensional daily ozone analysis using SBUV/2 and TOVS measurements. [Available online at http://www.cpc.ncep.noaa.gov/products/stratosphere/SMOBA/smoba_doc.shtml.]

  • Zhou, Y., Kratz D. P. , Wilber A. C. , Gupta S. K. , and Cess R. D. , 2007: An improved algorithm for retrieving surface downwelling longwave radiation from satellite measurements. J. Geophys. Res., 112, D15102, doi:10.1029/2006jd008159.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Evans K. F. , 1998: On the validity of the independent pixel approximation for boundary layer clouds observed during ASTEX. J. Geophys. Res., 103 (D6), 60596074.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 10 10 10

An Algorithm for the Constraining of Radiative Transfer Calculations to CERES-Observed Broadband Top-of-Atmosphere Irradiance

View More View Less
  • 1 Science Systems and Applications, Inc., Hampton, Virginia
  • | 2 Science Directorate, NASA Langley Research Center, Hampton, Virginia
  • | 3 Science Systems and Applications, Inc., Hampton, Virginia
  • | 4 Science Directorate, NASA Langley Research Center, Hampton, Virginia
Restricted access

Abstract

NASA’s Clouds and the Earth’s Radiant Energy System (CERES) project is responsible for operation and data processing of observations from scanning radiometers on board the Tropical Rainfall Measuring Mission (TRMM), Terra, Aqua, and Suomi National Polar-Orbiting Partnership (NPP) satellites. The clouds and radiative swath (CRS) CERES data product contains irradiances computed using a radiative transfer model for nearly all CERES footprints in addition to top-of-atmosphere (TOA) irradiances derived from observed radiances by CERES instruments. This paper describes a method to constrain computed irradiances by CERES-derived TOA irradiances using Lagrangian multipliers. Radiative transfer model inputs include profiles of atmospheric temperature, humidity, aerosols and ozone, surface temperature and albedo, and up to two sets of cloud properties for a CERES footprint. Those inputs are adjusted depending on predefined uncertainties to match computed TOA and CERES-derived TOA irradiance. Because CERES instantaneous irradiances for an individual footprint also include uncertainties, primarily due to the conversion of radiance to irradiance using anisotropic directional models, the degree of the constraint depends on CERES-derived TOA irradiance as well. As a result of adjustment, TOA computed-minus-observed standard deviations are reduced from 8 to 4 W m−2 for longwave irradiance and from 15 to 6 W m−2 for shortwave irradiance. While agreement of computed TOA with CERES-derived irradiances improves, comparisons with surface observations show that model constrainment to the TOA does not reduce computation bias error at the surface. After constrainment, shortwave down at the surface has an increased bias (standard deviation) of 1% (0.5%) and longwave increases by 0.2% (0.1%). Clear-sky changes are negligible.

Corresponding author address: David A. Rutan, Science Systems and Applications, Inc., 1 Enterprise Parkway, Suite 200, Hampton, VA 23666. E-mail: david.a.rutan@nasa.gov

Abstract

NASA’s Clouds and the Earth’s Radiant Energy System (CERES) project is responsible for operation and data processing of observations from scanning radiometers on board the Tropical Rainfall Measuring Mission (TRMM), Terra, Aqua, and Suomi National Polar-Orbiting Partnership (NPP) satellites. The clouds and radiative swath (CRS) CERES data product contains irradiances computed using a radiative transfer model for nearly all CERES footprints in addition to top-of-atmosphere (TOA) irradiances derived from observed radiances by CERES instruments. This paper describes a method to constrain computed irradiances by CERES-derived TOA irradiances using Lagrangian multipliers. Radiative transfer model inputs include profiles of atmospheric temperature, humidity, aerosols and ozone, surface temperature and albedo, and up to two sets of cloud properties for a CERES footprint. Those inputs are adjusted depending on predefined uncertainties to match computed TOA and CERES-derived TOA irradiance. Because CERES instantaneous irradiances for an individual footprint also include uncertainties, primarily due to the conversion of radiance to irradiance using anisotropic directional models, the degree of the constraint depends on CERES-derived TOA irradiance as well. As a result of adjustment, TOA computed-minus-observed standard deviations are reduced from 8 to 4 W m−2 for longwave irradiance and from 15 to 6 W m−2 for shortwave irradiance. While agreement of computed TOA with CERES-derived irradiances improves, comparisons with surface observations show that model constrainment to the TOA does not reduce computation bias error at the surface. After constrainment, shortwave down at the surface has an increased bias (standard deviation) of 1% (0.5%) and longwave increases by 0.2% (0.1%). Clear-sky changes are negligible.

Corresponding author address: David A. Rutan, Science Systems and Applications, Inc., 1 Enterprise Parkway, Suite 200, Hampton, VA 23666. E-mail: david.a.rutan@nasa.gov
Save