• Abraham, J., Gorman J. , Reseghetti F. , Sparrow E. M. , and Minkowycz W. J. , 2012: Drag coefficients for rotating expendable bathythermographs and the impact of launch parameters on depth predictions. Numer. Heat Transfer, 62A, 2543.

    • Search Google Scholar
    • Export Citation
  • Anderson, E. R., 1980: Expendable bathythermograph (XBT) accuracy studies. Naval Ocean Systems Center Tech. Rep. 550, 201 pp.

  • Bailey, R., Gronell A. M. , Phillips H. , Tanner E. , and Meyers G. , 1994: Quality control cookbook for XBT data. CSIRO Marine Laboratories Rep. 221, 84 pp.

  • Budéus, G., and Krause G. , 1993: On-cruise calibration of XBT probes. Deep-Sea Res. I, 40, 13591363.

  • Cheng, L., Zhu J. , Reseghetti F. , and Liu Q. , 2011: A new method to estimate the systematical biases of expendable bathythermograph. J. Atmos. Oceanic Technol., 28, 244265.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2011: Revisiting the earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and Goni G. J. , 2011: Direct evidence of a changing fall-rate bias in XBTs manufactured during 1986–2008. J. Atmos. Oceanic Technol., 28, 15691578.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., Church J. A. , White N. J. , Gleckler P. J. , Wijffels S. E. , Barker P. M. , and Dunn J. R. , 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., Lee W. , Zenk W. , and Meincke J. , 1986: A low-cost digital XBT system and its application to the real-time computation of dynamic height. J. Atmos. Oceanic Technol., 3, 7583.

    • Search Google Scholar
    • Export Citation
  • Fedorov, K. N., Ginsburg A. I. , and Zatsepin A. G. , 1978: Systematic differences in isotherm depths derived from XBT and CTD data. Polymode News, 50, 16.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., and Robinson A. R. , 1977: XBT measurements of thermal gradients in the MODE eddy. J. Phys. Oceanogr., 7, 300302.

  • Good, S. A., 2011: Depth biases in XBT data diagnosed using bathymetry data. J. Atmos. Oceanic Technol., 28, 287300.

  • Gouretski, V., 2012: Using GEBCO digital bathymetry to infer depth biases in the XBT data. Deep-Sea Res. I, 62, 4052.

  • Gouretski, V., and Koltermann K. P. , 2007: How much is the ocean really warming? Geophys. Res. Lett., 34, L01610, doi:10.1029/2006GL027834.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and Reseghetti F. , 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833.

    • Search Google Scholar
    • Export Citation
  • Green, A. W., 1984: Bulk dynamics of the expendable bathythermograph (XBT). Deep-Sea Res., 31A, 415426.

  • Hallock, Z. R., and Teague W. J. , 1992: The fall rate of the T-7 XBT. J. Atmos. Oceanic Technol., 9, 470483.

  • Hamon, M., Reverdin G. , and Le Traon P.-Y. , 2012: Empirical correction of XBT data. J. Atmos. Oceanic Technol., 29, 960–973.

  • Hanawa, K., and Yoritaka H. , 1987: Detection of systematic errors in XBT data and their correction. J. Oceanogr. Soc. Japan, 43, 6876.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and Yasuda T. , 1992: New detection method for XBT depth error and relationship between the depth error and coefficients in the depth-time equation. J. Oceanogr., 48, 221230.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., Rual P. , Bailey R. , Sy A. , and Szabados M. , 1995: A new depth-time equation for Sippican or TSK T-7, T-6 and T-4 expendable bathythermographs (XBT). Deep-Sea Res. I, 42, 14231451.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 14311435.

  • Hansen, J., Sato M. , Kharecha P. , and von Schuckmann K. , 2011: Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13 42113 449.

    • Search Google Scholar
    • Export Citation
  • Heinmiller, R. H., Ebbesmeyer C. C. , Taft B. A. , Olson D. B. , and Nikitin O. P. , 1983: Systematic errors in expendable bathythermograph (XBT) profiles. Deep-Sea Res., 30A, 11851197.

    • Search Google Scholar
    • Export Citation
  • IOC, 1989: Integrated Global Ocean Services System (IGOSS)—Summary of ship-of-opportunity programmes and technical reports. Intergovernmental Oceanographic Commission Rep. IOC/INF-804, 192 pp.

  • IOC, 1992: Ad hoc meeting of the IGOSS Task Team on Quality Control for Automated Systems: Summary report. Intergovernmental Oceanographic Commission Rep. IOC/INF-888, 144 pp. [Available online at http://unesdoc.unesco.org/ulis/en/index.shtml.]

  • Ishii, M., and Kimoto M. , 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and Wijffels S. E. , 2011: Ocean density change contributions to sea level rise. Oceanography, 24, 112121.

  • Kizu, S., and Hanawa K. , 2002a: Recorder-dependent temperature error of expendable bathythermograph. J. Oceanogr., 58, 469476.

  • Kizu, S., and Hanawa K. , 2002b: Start-up transient of XBT measurement. Deep-Sea Res., 49A, 935940.

  • Kizu, S., Yoritaka H. , and Hanawa K. , 2005: A new fall-rate equation for T-5 expendable bathythermograph (XBT) by TSK. J. Oceanogr., 61, 115121.

    • Search Google Scholar
    • Export Citation
  • Kizu, S., Sukigara C. , and Hanawa K. , 2011: Comparison of the fall rate and structure of recent T-7 XBT manufactured by Sippican and TSK. Ocean Sci., 7, 231244.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., Antonov J. I. , Boyer T. P. , Locarnini R. A. , Garcia H. E. , and Mishonov A. V. , 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., Good S. A. , Gouretski V. V. , Ishii M. , Johnson G. C. , Palmer M. D. , Smith D. M. , and Willis J. K. , 2010: Robust warming of the global upper ocean. Nature, 465, 334337.

    • Search Google Scholar
    • Export Citation
  • Reseghetti, F., Borghini M. , and Manzella G. M. R. , 2007: Factors affecting the quality of XBT data—Results of analysis on profiles from the western Mediterranean Sea. Ocean Sci., 3, 5975.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., Marin F. , Bourles B. , and L’Herminier P. , 2009: XBT temperature errors during French research cruises (1999–2007). J. Atmos. Oceanic Technol., 26, 24622473.

    • Search Google Scholar
    • Export Citation
  • Seaver, G. A., and Kuleshov S. , 1982: Experimental and analytical error of the expendable bathythermograph. J. Phys. Oceanogr., 12, 592600.

    • Search Google Scholar
    • Export Citation
  • Singer, J. J., 1990: On the error observed in electronically digitized T-7 XBT data. J. Atmos. Oceanic Technol., 7, 603611.

  • Sippican, 1991: Sippican MK-12 oceanographic data acquisition system user’s manual. Sippican, Inc., User’s Manual 306677-1, 165 pp.

  • Stark, J., Gorman J. , Hennessey M. , Reseghetti F. , Willis J. , Lyman J. , Abraham J. , and Borghini M. , 2011: A computational method for determining XBT depths. Ocean Sci, 7, 733743.

    • Search Google Scholar
    • Export Citation
  • Stegen, G. R., Delisi D. P. , and Von Colln R. C. , 1975: A portable, digital recording, expendable bathythermograph (XBT) system. Deep-Sea Res. Oceanogr. Abstr., 22, 447453.

    • Search Google Scholar
    • Export Citation
  • Sy, A., and Wright D. , 2000: XBT/XCTD standard test procedures for reliability and performance tests of expendable probes at sea. Revised draft prepared for the International Oceanographic Commission and World Meteorological Organization—Third Session of JCOMM Ship-of-Opportunity Implementation Panel (SOOPIP-III), 8 pp. [Available online at http://www.jcommops.org/soopip/doc/manuals/soopog/XBT-XCTD%20std%20test%20procedures.pdf.]

  • Thadathil, P., Saran A. K. , Gopalakrishna V. V. , Vethamony P. , Araligidad N. , and Bailey R. , 2002: XBT fall rate in waters of extreme temperature: A case study in the Antarctic Ocean. J. Atmos. Oceanic Technol., 19, 391396.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., Willis J. , Domingues C. M. , Barker P. , White N. J. , Gronell A. , Ridgway K. , and Church J. A. , 2008: Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J. Climate, 21, 56575672.

    • Search Google Scholar
    • Export Citation
  • Wright, D., and Szabados M. , 1989: Field evaluation of real-time XBT systems. Diving Safety and Physiology, Ocean Engineering/Technology, D. Anderson, Ed., Vol. 5, Oceans ’89 Proceedings, IEEE Publ. 89CH2780-5, 1621–1626.

  • Zanasca, P., 1994: On board XBTs calibration. NATO Undersea Research Centre Internal Notes, 17 pp. [Available online at http://data.nodc.noaa.gov/woa/WOD/XBT_BIAS/zanasca_1994.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 39
PDF Downloads 6 6 6

Biases in Expendable Bathythermograph Data: A New View Based on Historical Side-by-Side Comparisons

View More View Less
  • 1 Wealth from Oceans Flagship, Centre for Australian Weather and Climate Research, CSIRO, Hobart, Tasmania, Australia
  • | 2 International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 NOAA/National Oceanographic Data Center, Silver Spring, Maryland
  • | 4 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
Restricted access

Abstract

Because they make up 56% of ocean temperature profile data between 1967 and 2001, quantifying the biases in expendable bathythermograph (XBT) data is fundamental to understanding the evolution of the planetary energy and sea level budgets over recent decades. The nature and time history of these biases remain in dispute and dominate differences in analyses of the history of ocean warming. A database of over 4100 side-by-side deployments of XBTs and conductivity–temperature–depth (CTD) data has been assembled, and this unique resource is used to characterize and separate out the pure temperature bias from depth error in a way that was not previously possible. Two independent methods of bias extraction confirm that the results are robust to bias model and fitting method. It was found that there is a pure temperature bias in Sippican probes of ~0.05°C, independent of depth. The temperature bias has a time dependency, being larger (~0.1°C) in the earlier analog acquisition era and being likely due to changes in recorder type. Large depth errors are found in the 1970s–80s in shallower-measuring Sippican T4/T6 probe types, but the deeper-measuring Sippican T7/Deep Blue (DB) types have no error during this time. The Sippican T7/DB fall rate slows from ~1990 onward. It is found that year-to-year variations in fall rate have a bigger effect on corrections to the global XBT database than do any small effects of ocean temperature on fall rate. This study has large implications for the future development of better schemes to correct the global historical XBT archive.

Corresponding author address: Rebecca Cowley, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart TAS 7001, Australia. E-mail: rebecca.cowley@csiro.au

Abstract

Because they make up 56% of ocean temperature profile data between 1967 and 2001, quantifying the biases in expendable bathythermograph (XBT) data is fundamental to understanding the evolution of the planetary energy and sea level budgets over recent decades. The nature and time history of these biases remain in dispute and dominate differences in analyses of the history of ocean warming. A database of over 4100 side-by-side deployments of XBTs and conductivity–temperature–depth (CTD) data has been assembled, and this unique resource is used to characterize and separate out the pure temperature bias from depth error in a way that was not previously possible. Two independent methods of bias extraction confirm that the results are robust to bias model and fitting method. It was found that there is a pure temperature bias in Sippican probes of ~0.05°C, independent of depth. The temperature bias has a time dependency, being larger (~0.1°C) in the earlier analog acquisition era and being likely due to changes in recorder type. Large depth errors are found in the 1970s–80s in shallower-measuring Sippican T4/T6 probe types, but the deeper-measuring Sippican T7/Deep Blue (DB) types have no error during this time. The Sippican T7/DB fall rate slows from ~1990 onward. It is found that year-to-year variations in fall rate have a bigger effect on corrections to the global XBT database than do any small effects of ocean temperature on fall rate. This study has large implications for the future development of better schemes to correct the global historical XBT archive.

Corresponding author address: Rebecca Cowley, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart TAS 7001, Australia. E-mail: rebecca.cowley@csiro.au
Save