• Adam, M., Putaud J. P. , Martins dos Santos S. , Dell’Acqua A. , and Gruening C. , 2012: Aerosol hygroscopicity at a regional background site (Ispra) in northern Italy. Atmos. Chem. Phys., 12, 57035717.

    • Search Google Scholar
    • Export Citation
  • Badger, C. L., George I. , Griffiths P. T. , Braban C. F. , Cox R. A. , and Abbatt J. P. D. , 2006: Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulfate. Atmos. Chem. Phys., 6, 755768.

    • Search Google Scholar
    • Export Citation
  • Baltensperger, U., and Coauthors, 2002: Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy. J. Geophys. Res., 107, 8193, doi:10.1029/2001JD001292.

    • Search Google Scholar
    • Export Citation
  • Biskos, G., Paulsen D. , Russell L. M. , Buseck P. R. , and Martin S. T. , 2006: Prompt deliquescence and efflorescence of aerosol nanoparticles. Atmos. Chem. Phys., 6, 46334642.

    • Search Google Scholar
    • Export Citation
  • Brooks, S. D., DeMott P. J. , and Kreidenweis S. M. , 2004: Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate. Atmos. Environ., 38, 18591868.

    • Search Google Scholar
    • Export Citation
  • Busch, B., Kandler K. , Schütz L. , and Neusüß C. , 2002: Hygroscopic properties and water-soluble volume fraction of atmospheric particles in the diameter range from 50 nm to 3.8 μm during LACE 98. J. Geophys. Res., 107, 8119, doi:10.1029/2000JD000228.

    • Search Google Scholar
    • Export Citation
  • Carrico, C. M., Kreidenweis S. M. , Malm W. C. , Day D. E. , Lee T. , Carrillo J. , McMeeking G. R. , and Collett J. L. Jr., 2005: Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park. Atmos. Environ., 39, 13931404.

    • Search Google Scholar
    • Export Citation
  • Chameides, W. L., and Stelson A. W. , 1992: Aqueous-phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt. J. Geophys. Res., 97 (D18), 20 56520 580.

    • Search Google Scholar
    • Export Citation
  • Chen, L.-Y., Jeng F.-T. , Chen C.-C. , and Hsiao T.-C. , 2003: Hygroscopic behavior of atmospheric aerosol in Taipei. Atmos. Environ., 37, 20692075.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., and Coakley J. A. , 1974: Aerosol and climate. Science, 183, 7577.

  • Collins, D. R., Flagan R. C. , and Seinfeld J. H. , 2002: Improved inversion of scanning DMA data. Aerosol Sci. Technol., 36, 19.

  • Cubison, M. J., Coe H. , and Gysel M. , 2005: A modified hygroscopic tandem DMA and a data retrieval method based on optimal estimation. J. Aerosol Sci., 36, 846865.

    • Search Google Scholar
    • Export Citation
  • Day, D. E., Hand J. L. , Carrico C. M. , Engling G. , and Malm W. C. , 2006: Humidification factors from laboratory studies of fresh smoke from biomass fuels. J. Geophys. Res., 111, D22202, doi:10.1029/2006JD007221.

    • Search Google Scholar
    • Export Citation
  • Deng, Z. Z., and Coauthors, 2011: Size-resolved and bulk activation properties of aerosols in the north China plain: The importance of aerosol size distribution in the prediction of CCN number concentration. Atmos. Chem. Phys. Discuss., 11, 13331366.

    • Search Google Scholar
    • Export Citation
  • Duplissy, J., and Coauthors, 2008: Cloud forming potential of secondary organic aerosol under near atmospheric conditions. Geophys. Res. Lett., 35, L03818, doi:10.1029/2007GL031075.

    • Search Google Scholar
    • Export Citation
  • Duplissy, J., and Coauthors, 2009: Intercomparison study of six HTDMAs: Results and recommendations. Atmos. Meas. Tech., 2, 363378.

  • Dusek, U., and Coauthors, 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 13751378.

    • Search Google Scholar
    • Export Citation
  • Ferron, G. A., Kreyling W. G. , and Haider B. , 1988: Inhalation of salt aerosol particles—II. Growth and deposition in the human respiratory tract. J. Aerosol Sci., 19, 611631.

    • Search Google Scholar
    • Export Citation
  • Gysel, M., and Coauthors, 2007: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmos. Chem. Phys., 7, 61316144.

    • Search Google Scholar
    • Export Citation
  • Gysel, M., McFiggans G. B. , and Coe H. , 2009: Inversion of tandem differential mobility analyser (TDMA) measurements. J. Aerosol Sci., 40, 134151.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 2007: Variability of the relationship between particle size and cloud-nucleating ability. Geophys. Res. Lett., 34, L08801, doi:10.1029/2006GL028850.

    • Search Google Scholar
    • Export Citation
  • Irwin, M., Robinson N. , Allan J. D. , Coe H. , and McFiggans G. , 2011: Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3. Atmos. Chem. Phys., 11, 11 15711 174.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. R., Fletcher C. , Meyer N. , Modini R. , and Ristovski Z. D. , 2008: A robust, portable H-TDMA for field use. J. Aerosol Sci., 39, 850861.

    • Search Google Scholar
    • Export Citation
  • Keith, C. H., and Arons A. B. , 1954: The growth of sea-salt particles by condensation of atmospheric water vapor. J. Meteor., 11, 173184.

    • Search Google Scholar
    • Export Citation
  • Kim, J., Yoon S.-C. , Jefferson A. , and Kim S.-W. , 2006: Aerosol hygroscopic properties during Asian dust, pollution, and biomass burning episodes at Gosan, Korea in April 2001. Atmos. Environ., 40, 15501560.

    • Search Google Scholar
    • Export Citation
  • Köhler, H., 1936: The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc., 32, 11521161.

  • Kotchenruther, R. A., and Hobbs P. V. , 1998: Humidification factors of aerosols from biomass burning in Brazil. J. Geophys. Res., 103, 32 08132 089.

    • Search Google Scholar
    • Export Citation
  • Kotchenruther, R. A., Hobbs P. V. , and Hegg D. A. , 1999: Humidification factors for atmospheric aerosols off the mid-Atlantic coast of the United States. J. Geophys. Res., 104 (D2), 22392251.

    • Search Google Scholar
    • Export Citation
  • Liu, B. Y. H., Pui D. Y. H. , Whitby K. T. , Kittelson D. B. , Kousaka Y. , and McKenzie R. L. , 1978: The aerosol mobility chromatograph: A new detector for sulfuric acid aerosols. Atmos. Environ., 12, 99104.

    • Search Google Scholar
    • Export Citation
  • Liu, P. F., and Coauthors, 2011: Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the north China plain. Atmos. Chem. Phys., 11, 34793494.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2008: Influences of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 PRD campaign. Atmos. Environ., 42, 15251536.

    • Search Google Scholar
    • Export Citation
  • Liu, X. G., and Zhang Y. H. , 2010: Progress of domestic and overseas research on atmosphere aerosols (in Chinese). Climate Environ. Res., 15, 808816.

    • Search Google Scholar
    • Export Citation
  • Magi, B. I., and Hobbs P. V. , 2003: Effects of humidity on aerosols in southern Africa during the biomass burning season. J. Geophys. Res., 108, 8495, doi:10.1029/2002JD002144.

    • Search Google Scholar
    • Export Citation
  • Martinsson, B. G., and Coauthors, 1999: Droplet nucleation and growth in orographic clouds in relation to the aerosol population. Atmos. Res., 50, 289315.

    • Search Google Scholar
    • Export Citation
  • McMurry, P. H., and Stolzenburg M. R. , 1967: On the sensitivity of particle size to relative humidity for Los Angeles aerosols. Atmos. Environ., 23, 497507.

    • Search Google Scholar
    • Export Citation
  • Meier, J., and Coauthors, 2009: Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: A comparison of three experimental methods. Atmos. Chem. Phys., 9, 68656880.

    • Search Google Scholar
    • Export Citation
  • Mochida, M., Kuwata M. , Miyakawa T. , Takegawa N. , Kawamura K. , and Kondo Y. , 2006: Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo. J. Geophys. Res., 111, D23204, doi:10.1029/2005JD006980.

    • Search Google Scholar
    • Export Citation
  • Petäjä, T., and Coauthors, 2007: Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: Physical characterization and new particle formation. Atmos. Chem. Phys., 7, 27052720.

    • Search Google Scholar
    • Export Citation
  • Rader, D. J., and McMurry P. H. , 1986: Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. J. Aerosol Sci., 17, 771787.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Rissler, J., Swietlicki E. , Zhou J. , Roberts G. , Andreae M. O. , Gatti L. V. , and Artaxo P. , 2004: Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition—Comparison of modeled and measured CCN concentrations. Atmos. Chem. Phys., 4, 21192143.

    • Search Google Scholar
    • Export Citation
  • Sakurai, H., Fink M. A. , McMurry P. H. , Mauldin L. , Moore K. F. , Smith J. N. , and Eisele F. L. , 2005: Hygroscopicity and volatility of 4–10 nm particles during summertime atmospheric nucleation events in urban Atlanta. J. Geophys. Res., 110, D22S04, doi:10.1029/2005JD005918.

    • Search Google Scholar
    • Export Citation
  • Santarpia, J. L., Li R. , and Collins D. R. , 2004: Direct measurement of the hydration state of ambient aerosol populations. J. Geophys. Res., 109, D18209, doi:10.1029/2004JD004653.

    • Search Google Scholar
    • Export Citation
  • Schroeter, J. D., Musante C. J. , Hwang D. , Burton R. , Guilmette R. , and Martonen T. B. , 2001: Hygroscopic growth and deposition of inhaled secondary cigarette smoke in human nasal pathways. Aerosol Sci. Technol., 34, 137143.

    • Search Google Scholar
    • Export Citation
  • Sheridan, P. J., Jefferson A. , and Ogren J. A. , 2002: Spatial variability of submicrometer aerosol radiative properties over the Indian Ocean during INDOEX. J. Geophys. Res., 107 (D19), doi:10.1029/2000JD000166.

    • Search Google Scholar
    • Export Citation
  • Sjogren, S., and Coauthors, 2008: Hygroscopicity of the submicrometer aerosol at the high-Alpine site Jungfraujoch, 3580 m a.s.l., Switzerland. Atmos. Chem. Phys., 8, 57155729.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M. R., and McMurry P. H. , 1988: TDMAFIT user’s manual. Particle Technology Laboratory Publications No. 653, Department of Mechanical Engineering, University of Minnesota.

  • Stolzenburg, M. R., and McMurry P. H. , 2008: Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol., 42, 421432.

    • Search Google Scholar
    • Export Citation
  • Swietlicki, E., and Coauthors, 2008: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—A review. Tellus, 60B, 432469.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., and Munkelwitz H. R. , 1993: Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos. Environ., 27A, 467473.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., and Munkelwitz H. R. , 1994: Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res., 99 (D9), 18 80118 808.

    • Search Google Scholar
    • Export Citation
  • Trakumas, S., Juozaitis A. , Buzorius G. , Girgždys A. , and Ulevičius V. , 1995: Investigations of hygroscopical properties of atmospheric aerosol particle. J. Aerosol Sci., 26 (Suppl.), S371S372.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • Van Dingenen, R., Putaud J. P. , Martins-Dos Santos S. , and Raes F. , 2005: Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy) during the first MINATROC campaign. Atmos. Chem. Phys., 5, 22032226.

    • Search Google Scholar
    • Export Citation
  • Wang, S. C., and Flagan R. C. , 1990: Scanning electrical mobility spectrometer. Aerosol Sci. Technol., 13, 230240.

  • Watson, J. G., Chow J. C. , Sodeman D. A. , Lowenthal D. H. , Chang M. C. O. , Park K. , and Wang X. , 2011: Comparison of four scanning mobility particle sizers at the Fresno supersite. Particuology, 9, 204209.

    • Search Google Scholar
    • Export Citation
  • Weingartner, E., Gysel M. , and Baltensperger U. , 2001: Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument:Setup and first applications. Environ. Sci. Technol., 36, 5562.

    • Search Google Scholar
    • Export Citation
  • Wiedensohler, A., 1988: An approximation of the bipolar charge distribution for particles in the submicron range. J. Aerosol Sci., 19, 387389.

    • Search Google Scholar
    • Export Citation
  • Ye, X., Chen T. , Hu D. , Yang X. , Chen J. , Zhang R. , Khakuziv A. F. , and Wang L. , 2009: A multifunctional HTDMA system with a robust temperature control. Adv. Atmos. Sci., 26, 12351240.

    • Search Google Scholar
    • Export Citation
  • Ye, X., Ma Z. , Hu D. , Yang X. , and Chen J. , 2011: Size-resolved hygroscopicity of submicrometer urban aerosols in Shanghai during wintertime. Atmos. Res., 99, 353364.

    • Search Google Scholar
    • Export Citation
  • Yoon, S.-C., and Kim J. , 2006: Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia. Atmos. Environ., 40, 43284338.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 6 6 6

Design and Application of an Unattended Multifunctional H-TDMA System

View More View Less
  • 1 * Key Laboratory for Atmospheric Physics and Environment, Nanjing University of Information Science and Technology, Nanjing, and Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China
  • | 2 Sun Yat-sen University, Guangzhou, China
  • | 3 Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China
  • | 4 Hong Kong Observatory, Hong Kong, China
  • | 5 Dongguan Meteorological Bureau, Dongguan, China
  • | 6 ** Key Laboratory for Atmospheric Physics and Environment, Nanjing University of Information Science and Technology, Nanjing, China
Restricted access

Abstract

The hygroscopic properties of aerosols have a significant impact on aerosol particle number size distributions (PNSD), formation of cloud condensation nuclei, climate forcing, and atmospheric visibility, as well as human health. To allow for the observation of the hygroscopic growth of aerosols with long-term accuracy, an unattended multifunctional hygroscopicity-tandem differential mobility analyzer (H-TDMA) system was designed and built by the Institute of Tropical and Marine Meteorology (ITMM), China Meteorological Administration (CMA), in Guangzhou, China. The system is capable of measuring dry and wet PNSD, hygroscopic growth factor by particle size, and mixing states. This article describes in detail the working principles, components, and calibration methods of the system. Standard polystyrene latex (PSL) spheres with five different diameters were chosen to test the system’s precision and accuracy of particle size measurement. Ammonium sulfate was used to test the hygroscopic response of the system for accurate growth factor measurement. The test results show that the deviation of the growth factor measured by the system is within a scope of −0.01 to −0.03 compared to Köhler theoretical curves. Results of temperature and humidity control performance tests indicate that the system is robust. An internal temperature gradient of less than 0.2 K for a second differential mobility analyzer (DMA2) makes it possible to reach a set-point relative humidity (RH) value of 90% and with a standard deviation of ±0.44%, sufficient for unattended field observation.

Corresponding author address: H. B. Tan, Atmospheric Physics and Chemistry, Institute of Tropical and Marine Meteorology, China Meteorological Administration, No. 6 Fujin Road, Guangzhou 510080, China. E-mail: hbtan@grmc.gov.cn

Abstract

The hygroscopic properties of aerosols have a significant impact on aerosol particle number size distributions (PNSD), formation of cloud condensation nuclei, climate forcing, and atmospheric visibility, as well as human health. To allow for the observation of the hygroscopic growth of aerosols with long-term accuracy, an unattended multifunctional hygroscopicity-tandem differential mobility analyzer (H-TDMA) system was designed and built by the Institute of Tropical and Marine Meteorology (ITMM), China Meteorological Administration (CMA), in Guangzhou, China. The system is capable of measuring dry and wet PNSD, hygroscopic growth factor by particle size, and mixing states. This article describes in detail the working principles, components, and calibration methods of the system. Standard polystyrene latex (PSL) spheres with five different diameters were chosen to test the system’s precision and accuracy of particle size measurement. Ammonium sulfate was used to test the hygroscopic response of the system for accurate growth factor measurement. The test results show that the deviation of the growth factor measured by the system is within a scope of −0.01 to −0.03 compared to Köhler theoretical curves. Results of temperature and humidity control performance tests indicate that the system is robust. An internal temperature gradient of less than 0.2 K for a second differential mobility analyzer (DMA2) makes it possible to reach a set-point relative humidity (RH) value of 90% and with a standard deviation of ±0.44%, sufficient for unattended field observation.

Corresponding author address: H. B. Tan, Atmospheric Physics and Chemistry, Institute of Tropical and Marine Meteorology, China Meteorological Administration, No. 6 Fujin Road, Guangzhou 510080, China. E-mail: hbtan@grmc.gov.cn
Save