• Carter, D. A., Gage K. S. , Ecklund W. L. , Angevine W. M. , Johnston P. E. , Riddle A. C. , Wilson J. , and Williams C. R. , 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci., 30, 9771002.

    • Search Google Scholar
    • Export Citation
  • Chandra, A. S., Kollias P. , Giangrande S. E. , and Klein S. A. , 2010: Long-term observations of the convective boundary layer using insect radar returns at the SGP ARM Climate Research Facility. J. Climate, 23, 56995714.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Gage, K. S., Williams C. R. , Ecklund W. L. , and Johnston P. E. , 1999: Use of two profilers during MCTEX for unambiguous identification of Bragg scattering and Rayleigh scattering. J. Atmos. Sci., 56, 36793691.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., Williams C. R. , Johnston P. E. , Ecklund W. L. , Cifelli R. , Tokay A. , and Carter D. A. , 2000: Doppler radar profilers as calibration tools for scanning radars. J. Appl. Meteor., 39, 22092222.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., Williams C. R. , Clark W. L. , Johnston P. E. , and Carter D. A. , 2002: Profiler contributions to Tropical Rainfall Measuring Mission (TRMM) ground validation field campaigns. J. Atmos. Oceanic Technol., 19, 843863.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Sekhon R. S. , 1974: Objective determination of the noise level in Doppler spectra. J. Appl. Meteor., 13, 808811.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Gaussiat N. , and Illingworth A. J. , 2005: Stratocumulus liquid water content from dual-wavelength radar. J. Atmos. Oceanic Technol., 22, 12071218.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Clothiaux E. E. , Miller M. A. , Albrecht B. A. , Stephens G. L. , and Ackerman T. P. , 2007a: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Clothiaux E. E. , Miller M. A. , Luke E. P. , Johnson K. L. , Moran K. P. , Widener K. B. , and Albrecht B. A. , 2007b: The Atmospheric Radiation Measurement Program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic Technol., 24, 11991214.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2006: DEVEX-disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Adv. Water Resour., 29, 311325.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and Krajewski W. F. , 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617.

  • Matrosov, S. Y., 2005: Attenuation-based estimates of rainfall rates aloft with vertically pointing Ka-band radars. J. Atmos. Oceanic Technol., 22, 4354.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010: Synergetic use of millimeter- and centimeter-wavelength radars for retrievals of cloud and rainfall parameters. Atmos. Chem. Phys., 10, 33213331.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., May P. T. , and Shupe M. D. , 2006: Rainfall profiling using Atmospheric Radiation Measurement Program vertically pointing 8-mm wavelength radars. J. Atmos. Oceanic Technol., 23, 14781491.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., 1995: Using radar-measured radial vertical velocities to distinguish precipitation scattering from clear-air scattering. J. Atmos. Oceanic Technol., 12, 257267.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75, 12011222.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., Durden S. L. , Im E. , Pak K. S. , Reinke D. G. , Partain P. , Haynes J. M. , and Marchand R. T. , 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Kruger A. , Krajewski W. F. , Kucera P. A. , and Filho A. J. P. , 2002: Measurements of drop size distribution in the southwestern Amazon basin. J. Geophys. Res., 107, 8052, doi:10.1029/2001JD000355.

    • Search Google Scholar
    • Export Citation
  • Torres, S. M., Dubel Y. F. , and Zrnić D. S. , 2004: Design, implementation, and demonstration of a staggered PRT algorithm for the WSR-88D. J. Atmos. Oceanic Technol., 21, 13891399.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., Ecklund W. L. , Johnston P. E. , and Gage K. S. , 2000: Cluster analysis techniques to separate air motion and hydrometeors in vertical incident profiler observations. J. Atmos. Oceanic Technol., 17, 949962.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., Gage K. S. , Clark W. , and Kucera P. , 2005: Monitoring the reflectivity calibration of a scanning radar using a profiling radar and a disdrometer. J. Atmos. Oceanic Technol., 22, 1004.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., White A. B. , Gage K. S. , and Ralph F. M. , 2007: Vertical structure of precipitation and related microphysics observed by NOAA profilers and TRMM during NAME 2004. J. Climate, 20, 16931712.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1975: Simulation of weatherlike Doppler spectra and signals. J. Appl. Meteor., 14, 619620.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 4 4 4

Signal Postprocessing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915-MHz Wind Profilers

View More View Less
  • 1 Earth Observation Sciences, Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
  • | 2 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 3 Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, New York
  • | 4 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado
Restricted access

Abstract

The Department of Energy Atmospheric Radiation Measurement (ARM) Program has recently initiated a new research avenue toward a better characterization of the transition from cloud to precipitation. Dual-wavelength techniques applied to millimeter-wavelength radars and a Rayleigh reference have a great potential for rain-rate retrievals directly from dual-wavelength ratio measurements. In this context, the recent reconfiguration of the ARM 915-MHz wind profilers in a vertically pointing mode makes these instruments the ideal candidate for providing the Rayleigh reflectivity/Doppler velocity reference. Prior to any scientific study, the wind profiler data must be carefully quality checked. This work describes the signal postprocessing steps that are essential for the delivery of high-quality reflectivity and mean Doppler velocity products—that is, the estimation of the noise floor from clear-air echoes, the absolute calibration with a collocated disdrometer, the dealiasing of Doppler velocities, and the merging of the different modes of the wind profiler. The improvement added by the proposed postprocessing is confirmed by comparison with a high-quality S-band profiler deployed at the ARM Southern Great Plains site during the Midlatitude Continental Convective Clouds Experiment. With the addition of a vertically pointing mode and with the postprocessing described in this work in place, besides being a key asset for wind research wind profilers observations may therefore become a centerpiece for rain studies in the years to come.

Corresponding author address: Frédéric Tridon, Earth Observation Sciences, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom. E-mail: f.tridon@leicester.ac.uk

Abstract

The Department of Energy Atmospheric Radiation Measurement (ARM) Program has recently initiated a new research avenue toward a better characterization of the transition from cloud to precipitation. Dual-wavelength techniques applied to millimeter-wavelength radars and a Rayleigh reference have a great potential for rain-rate retrievals directly from dual-wavelength ratio measurements. In this context, the recent reconfiguration of the ARM 915-MHz wind profilers in a vertically pointing mode makes these instruments the ideal candidate for providing the Rayleigh reflectivity/Doppler velocity reference. Prior to any scientific study, the wind profiler data must be carefully quality checked. This work describes the signal postprocessing steps that are essential for the delivery of high-quality reflectivity and mean Doppler velocity products—that is, the estimation of the noise floor from clear-air echoes, the absolute calibration with a collocated disdrometer, the dealiasing of Doppler velocities, and the merging of the different modes of the wind profiler. The improvement added by the proposed postprocessing is confirmed by comparison with a high-quality S-band profiler deployed at the ARM Southern Great Plains site during the Midlatitude Continental Convective Clouds Experiment. With the addition of a vertically pointing mode and with the postprocessing described in this work in place, besides being a key asset for wind research wind profilers observations may therefore become a centerpiece for rain studies in the years to come.

Corresponding author address: Frédéric Tridon, Earth Observation Sciences, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom. E-mail: f.tridon@leicester.ac.uk
Save