Polarization Lidar at Summit, Greenland, for the Detection of Cloud Phase and Particle Orientation

Ryan R. Neely III * Department of Atmospheric and Oceanic Science, University of Colorado, and CIRES, and NOAA/Earth System Research Laboratory/GMD, and NOAA/Earth System Research Laboratory/CSD, Boulder, Colorado

Search for other papers by Ryan R. Neely III in
Current site
Google Scholar
PubMed
Close
,
Matthew Hayman Advanced Studies Program, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Matthew Hayman in
Current site
Google Scholar
PubMed
Close
,
Robert Stillwell Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Robert Stillwell in
Current site
Google Scholar
PubMed
Close
,
Jeffrey P. Thayer Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Jeffrey P. Thayer in
Current site
Google Scholar
PubMed
Close
,
R. Michael Hardesty NOAA/Earth System Research Laboratory/CSD/Atmospheric Remote Sensing, Boulder, Colorado

Search for other papers by R. Michael Hardesty in
Current site
Google Scholar
PubMed
Close
,
Michael O'Neill Earth Science and Observation Center, CIRES, and NOAA/Earth System Research Laboratory/GMD, Boulder, Colorado

Search for other papers by Michael O'Neill in
Current site
Google Scholar
PubMed
Close
,
Matthew D. Shupe ** CIRES, and ATOC, University of Colorado, and NOAA/Earth System Research Laboratory/PSD, Boulder, Colorado

Search for other papers by Matthew D. Shupe in
Current site
Google Scholar
PubMed
Close
, and
Catherine Alvarez NOAA/Earth System Research Laboratory, GMD, Boulder, Colorado

Search for other papers by Catherine Alvarez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate measurements of cloud properties are necessary to document the full range of cloud conditions and characteristics. The Cloud, Aerosol Polarization and Backscatter Lidar (CAPABL) has been developed to address this need by measuring depolarization, particle orientation, and the backscatter of clouds and aerosols. The lidar is located at Summit, Greenland (72.6°N, 38.5°W; 3200 m MSL), as part of the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit Project and NOAA's Earth System Research Laboratory's Global Monitoring Division's lidar network. Here, the instrument is described with particular emphasis placed upon the implementation of new polarization methods developed to measure particle orientation and improve the overall accuracy of lidar depolarization measurements. Initial results from the lidar are also shown to demonstrate the ability of the lidar to observe cloud properties.

Corresponding author address: Ryan Reynolds Neely III, Department of Atmospheric and Oceanic Science, UCB 311, University of Colorado, Boulder, CO 80309-0311. E-mail: ryan.neely@colorado.edu

Abstract

Accurate measurements of cloud properties are necessary to document the full range of cloud conditions and characteristics. The Cloud, Aerosol Polarization and Backscatter Lidar (CAPABL) has been developed to address this need by measuring depolarization, particle orientation, and the backscatter of clouds and aerosols. The lidar is located at Summit, Greenland (72.6°N, 38.5°W; 3200 m MSL), as part of the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit Project and NOAA's Earth System Research Laboratory's Global Monitoring Division's lidar network. Here, the instrument is described with particular emphasis placed upon the implementation of new polarization methods developed to measure particle orientation and improve the overall accuracy of lidar depolarization measurements. Initial results from the lidar are also shown to demonstrate the ability of the lidar to observe cloud properties.

Corresponding author address: Ryan Reynolds Neely III, Department of Atmospheric and Oceanic Science, UCB 311, University of Colorado, Boulder, CO 80309-0311. E-mail: ryan.neely@colorado.edu
Save
  • Alvarez, R., Eberhard W. , Intrieri J. , Sandberg S. P. , and Koenig K. W. , 1998: Cloud backscatter and phase measurements in the Arctic using ETL's DABUL lidar. Preprints, Fourth Int. Symp. on Tropospheric Profiling, Boston, MA, Amer. Meteor. Soc., 7–9.

  • Ansmann, A., Wandinger U. , Riebesell M. , Weitkamp C. , and Michaelis W. , 1992: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt., 31, 71137131.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899.

    • Search Google Scholar
    • Export Citation
  • Barnes, J., and Hofmann D. , 1997: Lidar measurements of stratospheric aerosol over Mauna Loa Observatory. Geophys. Res. Lett., 24, 19231926.

    • Search Google Scholar
    • Export Citation
  • Borys, R., Del Vecchio D. , Jaffrezo J.-L. , Davidson C. , and Mitchell D. , 1993: Assessment of ice particle growth processes at dye-3, Greenland. Atmos. Environ., 27A, 28152822.

    • Search Google Scholar
    • Export Citation
  • Bourassa, A., Rieger L. , Lloyd N. , and Degenstein D. A. , 2011: Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison. Atmos. Chem. Phys. Discuss., 11, 25 78525 811.

    • Search Google Scholar
    • Export Citation
  • Cawkwell, F., and Bamber J. , 2002: The impact of cloud cover on the net radiation budget of the Greenland Ice Sheet. Ann. Glaciol., 34, 141149.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., and Brogniez G. , 1998: Cirrus clouds' microphysical properties deduced from POLDER observations. J. Quant. Spectrosc. Radiat. Transfer, 60, 375390.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., Whiteway J. A. , and Carswell A. I. , 1993: Correction for nonlinear photon-counting effects in lidar systems. Appl. Opt., 32, 67426753.

    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observation:–Some comments. Appl. Opt., 23, 652653.

  • Fernald, F. G., Herman B. M. , and Reagan J. A. , 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor., 11, 482489.

    • Search Google Scholar
    • Export Citation
  • Flynn, C. J., Mendoza A. , Zheng Y. , and Mathur S. , 2007: Novel polarization-sensitive micropulse lidar measurement technique. Opt. Express, 15, 27852790.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and Hunter E. , 2006: New insight into the disappearing Arctic sea ice. Eos, Trans. Amer. Geophys. Union, 87, 509511.

  • Gimmestad, G. G., 2008: Reexamination of depolarization in lidar measurements. Appl. Opt., 47, 37953802.

  • Griggs, J., and Bamber J. , 2008: Assessment of cloud cover characteristics in satellite datasets and reanalysis products for Greenland. J. Climate, 21, 18371849.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., Sato M. , Kharecha P. , and von Schuckmann K. , 2011: Earth's energy imbalance and implications. Atmos. Chem. Phys. Discuss., 11, 27 03127 105.

    • Search Google Scholar
    • Export Citation
  • Hayman, M., 2011: Optical theory for the advancement of polarization lidar. Ph.D. thesis, University of Colorado, 201 pp.

  • Hayman, M., and Thayer J. P. , 2009: Accounting for system affects in depolarization lidar. Proc. Int. Quantum Electronics Conf., Baltimore, MD, Lasers and Electro-Optics Society, JTuD86. [Available online at http://www.opticsinfobase.org/abstract.cfm?URI=IQEC-2009-JTuD86.]

  • Hayman, M., and Thayer J. P. , 2012: General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices. J. Opt. Soc. Amer., 29A, 400409.

    • Search Google Scholar
    • Export Citation
  • Hofmann, D., Barnes J. , Dutton E. , Deshler T. , Jäger H. , Keen R. , and Osborn M. , 2003: Surface-Based Observations of Volcanic Emissions to the Stratosphere.Geophys. Monogr., Vol. 139, Amer. Geophys. Union, 57–73.

  • Hofmann, D., Barnes J. , O'Neill M. , Trudeau M. , and Neely R. , 2009: Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado. Geophys. Res. Lett., 36, L15808, doi:10.1029/2009GL039008.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309.

  • Intrieri, J. M., Shupe M. D. , Uttal T. , and McCarthy B. J. , 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107 (C10), doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jäger, H., and Deshler T. , 2002: Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements. Geophys. Res. Lett., 29, 1929, doi:10.1029/2002GL015609.

    • Search Google Scholar
    • Export Citation
  • Jäger, H., and Deshler T. , 2003: Correction to “Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements.” Geophys. Res. Lett., 30, 1382, doi:10.1029/2003GL0171892003.

    • Search Google Scholar
    • Export Citation
  • Kaul, B., Samokhvalov I. , and Volkov S. , 2004: Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar. Appl. Opt., 43, 66206628.

    • Search Google Scholar
    • Export Citation
  • Kay, J., L'Ecuyer T. , Gettelman A. , Stephens G. , and O'Dell C. , 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Klett, J., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20, 211220.

  • Liu, Z., Li Z. , Liu B. , and Li R. , 2009: Analysis of saturation signal correction of the troposphere lidar. Chin. Opt. Lett., 7, 10511054.

    • Search Google Scholar
    • Export Citation
  • Lynch, D. K., Gedzelman S. D. , and Fraser A. B. , 1994: Subsuns, Bottlinger's rings, and elliptical halos. Appl. Opt., 33, 45804589.

  • Magono, C., and Lee C. W. , 1966: Meterological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., 2, 321335.

  • Noel, V., and Sassen K. , 2005: Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations. J. Appl. Meteor., 44, 653664.

    • Search Google Scholar
    • Export Citation
  • Noel, V., and Chepfer H. , 2010: A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). J. Geophys. Res., 115, D00H23, doi:10.1029/2009JD012365.

    • Search Google Scholar
    • Export Citation
  • Nott, G. J., and Duck T. , 2011: Review: Lidar studies of the polar troposphere. Meteor. Appl., 18, 383405.

  • Nott, G. J., and Coauthors, 2012: A remotely operated lidar for aerosol, temperature, and water vapor profiling in the High Arctic. J. Atmos. Oceanic Technol., 29, 221234.

    • Search Google Scholar
    • Export Citation
  • Pal, S. R., and Carswell A. I. , 1973: Polarization properties of lidar backscattering from clouds. Appl. Opt., 12, 15301535.

  • Pappalardo, G., and Coauthors, 2004: Aerosol lidar intercomparison in the framework of the EARLINET Project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. Appl. Opt., 43, 53705385.

    • Search Google Scholar
    • Export Citation
  • Platt, C., Abshire N. , and McNice G. , 1978: Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals. J. Appl. Meteor., 17, 12201224.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., and Kanagaratnam P. , 2006: Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986990.

  • Russell, P. B., Swissler T. J. , and McCormick M. P. , 1979: Methodology for error analysis and simulation of lidar aerosol measurements. Appl. Opt., 18, 115.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1992: Evidence for liquid-phase cirrus cloud formation from volcanic aerosols: Climatic implications. Science, 257, 516519.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 2005: Polarization in lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer, 19–40.

  • Sassen, K., Liou K.-N. , Takano Y. , and Khvorostyanov V. I. , 2003: Diurnal effects in the composition of cirrus clouds. Geophys. Res. Lett., 30, 1539, doi:10.1029/2003GL017034.

    • Search Google Scholar
    • Export Citation
  • Schotland, R., Sassen K. , and Stone R. , 1971: Observations by lidar of linear depolarization ratios for hydrometeors. J. Appl. Meteor., 10, 10111017.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., Walden V. P. , Eloranta E. , Uttal T. , Campbell J. R. , Starkweather S. M. , and Shiobara M. , 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2013: High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bull. Amer. Meteor. Soc., 94, 169186.

    • Search Google Scholar
    • Export Citation
  • Starkweather, S. M., 2004: Characteristics of cloud cover and its radiative impacts over the high elevations of the Greenland Ice Sheet. Ph.D. thesis, University of Colorado, 202 pp.

  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35, 21232132.

  • Takano, Y., 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319.

    • Search Google Scholar
    • Export Citation
  • Thayer, J., Nielsen N. , Warren R. , Heinselman C. , and Sohn J. , 1997: Rayleigh lidar system for middle atmosphere research in the Arctic. Opt. Eng., 36, 20452061.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., Cartwright J. , and Wareing D. P. , 1990: Lidar observations of the horizontal orientation of ice crystals in cirrus clouds. Tellus, 42B, 211216.

    • Search Google Scholar
    • Export Citation
  • Turner, D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1981: Light Scattering by Small Particles. Dover, 487 pp.

  • van den Broeke, M., and Coauthors, 2009: Partitioning recent Greenland mass loss. Science, 326, 984986.

  • Washington, W., and Meehl G. , 1989: Climate sensitivity due to increased CO2: Experiments with a coupled atmosphere and ocean general circulation model. Climate Dyn., 4, 138.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., Yang P. , Dessler A. E. , Hu Y. , and Baum B. A. , 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations. J. Appl. Meteor. Climatol., 51, 14261439.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 588 130 3
PDF Downloads 288 97 7