Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar

Rob K. Newsom Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Rob K. Newsom in
Current site
Google Scholar
PubMed
Close
,
David D. Turner NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
, and
John E. M. Goldsmith Sandia National Laboratories, Livermore, California

Search for other papers by John E. M. Goldsmith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the accuracy and calibration stability of temperature profiles derived from an operational Raman lidar over a 2-yr period from 1 January 2009 to 31 December 2010. The lidar, which uses the rotational Raman technique for temperature measurement, is located at the U.S. Department of Energy's Atmospheric Radiation Measurement site near Billings, Oklahoma. The lidar performance specifications, data processing algorithms, and the results of several test runs are described. Calibration and overlap correction of the lidar is achieved using simultaneous and collocated radiosonde measurements. Results show that the calibration coefficients exhibit no significant long-term or seasonal variation but do show a distinct diurnal variation. When the diurnal variation in the calibration is not resolved the lidar temperature bias exhibits a significant diurnal variation. Test runs in which only nighttime radiosonde measurements are used for calibration show that the lidar exhibits a daytime warm bias that is correlated with the strength of the solar background signal. This bias, which reaches a maximum of ~2.4 K near solar noon, is reduced through the application of a correction scheme in which the calibration coefficients are parameterized in terms of the solar background signal. Comparison between the corrected lidar temperatures and the noncalibration radiosonde temperatures show a negligibly small median bias of −0.013 K for altitudes below 10 km AGL. The corresponding root-mean-square difference profile is roughly constant at ~2 K below 6 km AGL and increases to about 4.5 K at 10 km AGL.

Denotes Open Access content.

Corresponding author address: Rob K. Newsom, Pacific Northwest National Laboratory, 902 Battelle Blvd., P.O. Box 999, MSIN K9-30, Richland, WA 99352. E-mail: rob.newsom@pnnl.gov

Abstract

This study investigates the accuracy and calibration stability of temperature profiles derived from an operational Raman lidar over a 2-yr period from 1 January 2009 to 31 December 2010. The lidar, which uses the rotational Raman technique for temperature measurement, is located at the U.S. Department of Energy's Atmospheric Radiation Measurement site near Billings, Oklahoma. The lidar performance specifications, data processing algorithms, and the results of several test runs are described. Calibration and overlap correction of the lidar is achieved using simultaneous and collocated radiosonde measurements. Results show that the calibration coefficients exhibit no significant long-term or seasonal variation but do show a distinct diurnal variation. When the diurnal variation in the calibration is not resolved the lidar temperature bias exhibits a significant diurnal variation. Test runs in which only nighttime radiosonde measurements are used for calibration show that the lidar exhibits a daytime warm bias that is correlated with the strength of the solar background signal. This bias, which reaches a maximum of ~2.4 K near solar noon, is reduced through the application of a correction scheme in which the calibration coefficients are parameterized in terms of the solar background signal. Comparison between the corrected lidar temperatures and the noncalibration radiosonde temperatures show a negligibly small median bias of −0.013 K for altitudes below 10 km AGL. The corresponding root-mean-square difference profile is roughly constant at ~2 K below 6 km AGL and increases to about 4.5 K at 10 km AGL.

Denotes Open Access content.

Corresponding author address: Rob K. Newsom, Pacific Northwest National Laboratory, 902 Battelle Blvd., P.O. Box 999, MSIN K9-30, Richland, WA 99352. E-mail: rob.newsom@pnnl.gov
Save
  • Alexander, S. P., and Tsuda T. , 2008: High-resolution radio acoustic sounding system observations and analysis up to 20 km. J. Atmos. Oceanic Technol., 25, 13831396.

    • Search Google Scholar
    • Export Citation
  • Alpers, M., Eixmann R. , Fricke-Begemann C. , Gerding M. , and Hoffner J. , 2004: Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and rotational Raman scattering. Atmos. Chem. Phys., 4, 793800.

    • Search Google Scholar
    • Export Citation
  • Arshinov, Y. F., Bobrovnikov S. , Zuev V. E. , and Mitev V. M. , 1983: Atmospheric temperature measurements using pure rotational Raman lidar. Appl. Opt., 22, 29842990.

    • Search Google Scholar
    • Export Citation
  • Balin, I., Serikov I. , Bobrovnikov S. , Simeonov V. , Calpini B. , Arshinov Y. , and Bergh H. V. D. , 2004: Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar. Appl. Phys., 79B, 775782.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Reichardt J. , 2000: Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. Appl. Opt., 39, 13721378.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., Nakamura T. , Onishi M. , Baumgrat R. , and Tsuda T. , 2002: Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient. Appl. Opt., 41, 76577666.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., Nakamura T. , and Tsuda T. , 2004: Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere. Appl. Opt., 43, 29302939.

    • Search Google Scholar
    • Export Citation
  • Chandrasekhar Sarma, T. V., Narayana Rao D. , Furumoto J. , and Tsuda T. , 2008: Development of radio acoustic sounding system (RASS) with Gadanki MST radar—First results. Ann. Geophys., 26, 25312542.

    • Search Google Scholar
    • Export Citation
  • Cooney, J., 1972: Measurement of atmospheric temperature profiles by Raman backscatter. J. Appl. Meteor., 11, 108112.

  • Di Girolamo, P., Marchese R. , Whiteman D. N. , and Demoz B. , 2004: Rotational Raman lidar measurements of atmospheric temperature in the UV. Geophys. Res. Lett., 31, L01106, doi:10.1029/2003GL018342.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., Smith W. L. , Howell H. B. , Knuteson R. O. , Woolf H. , and Revercomb H. E. , 2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using the atmospheric emitted radiance interferometer (AERI). J. Appl. Meteor., 42, 584597.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., Blair F. H. , Bisson S. E. , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds and aerosols. Appl. Opt., 37, 49794990.

    • Search Google Scholar
    • Export Citation
  • Li, T., Leblanc T. , McDermid I. S. , Keckhut P. , Hauchecorne A. , and Dou X. , 2011: Middle atmosphere temperature trend and solar cycle revealed by long-term Rayleigh lidar observations. J. Geophys. Res., 116, D00P05, doi:10.1029/2010JD015275.

    • Search Google Scholar
    • Export Citation
  • Loehnert, U., Turner D. D. , and Crewell S. , 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032.

    • Search Google Scholar
    • Export Citation
  • Luers, J. K., 1997: Temperature error of the Vaisala RS90 radiosonde. J. Atmos. Oceanic Technol., 14, 15201532.

  • Mattis, I., Müller D. , Ansmann A. , Wandinger U. , Preißler J. , Seifert P. , and Tesche M. , 2008: Ten years of multiwavelength Raman lidar observations of free-tropospheric aerosol layers over central Europe: Geometrical properties and annual cycle. J. Geophys. Res., 113, D20202, doi:10.1029/2007JD009636.

    • Search Google Scholar
    • Export Citation
  • Nedeljkovic, D., Hauchecorne A. , and Chanin M. , 1993: Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Trans. Geosci. Remote Sens., 31, 90101.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., Turner D. D. , Mielke B. , Clayton M. F. , Ferrare R. , and Sivaraman C. , 2009: Simultaneous analog and photon counting detection for Raman lidar. Appl. Opt., 48, 39033914.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., Flannery B. P. , Teukolsky S. A. , and Vetterling W. T. , 1988: Numerical Recipes in C. Cambridge University Press, 531 pp.

  • Radlach, M., Behrendt A. , and Wulfmeyer V. , 2008: Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields. Atmos. Chem. Phys., 8, 159169.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., Claude H. , Schönenborn F. , Leiterer U. , Dier H. , and Lanzinger E. , 2008: Pressure and temperature differences between Vaisala RS80 and RS92 radiosonde systems. J. Atmos. Oceanic Technol., 25, 909927.

    • Search Google Scholar
    • Export Citation
  • Stokes, R. R., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Goldsmith J. E. M. , 1999: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program's 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol., 16, 10621076.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Ferrare R. A. , Heilman Brasseur L. A. , Feltz W. F. , and Tooman T. P. , 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol., 19, 3750.

    • Search Google Scholar
    • Export Citation
  • Vaisala, cited 2010: Vaisala radiosonde RS92-D. Reference B210763EN-B, 2 pp. [Available online at http://www.vaisala.com/Vaisala Documents/Brochures and Datasheets/RS92-D-Datasheet-B210763EN-B-LoRes.pdf.]

  • Whiteman, D. N., and Coauthors, 2006: Raman water vapor lidar measurements during the International H2O Project. Part I: Instrumentation and analysis techniques. J. Atmos. Oceanic Technol., 23, 157169.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 619 149 4
PDF Downloads 344 114 5