Estimating Oceanic Turbulence Dissipation from Seismic Images

W. Steven Holbrook * Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming

Search for other papers by W. Steven Holbrook in
Current site
Google Scholar
PubMed
Close
,
Ilker Fer Geophysical Institute, University of Bergen, Bergen, Norway

Search for other papers by Ilker Fer in
Current site
Google Scholar
PubMed
Close
,
Raymond W. Schmitt Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Raymond W. Schmitt in
Current site
Google Scholar
PubMed
Close
,
Daniel Lizarralde Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Daniel Lizarralde in
Current site
Google Scholar
PubMed
Close
,
Jody M. Klymak School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Jody M. Klymak in
Current site
Google Scholar
PubMed
Close
,
L. Cody Helfrich * Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming

Search for other papers by L. Cody Helfrich in
Current site
Google Scholar
PubMed
Close
, and
Robert Kubichek Department of Electrical and Computer Engineering, University of Wyoming, Laramie, Wyoming

Search for other papers by Robert Kubichek in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seismic images of oceanic thermohaline finestructure record vertical displacements from internal waves and turbulence over large sections at unprecedented horizontal resolution. Where reflections follow isopycnals, their displacements can be used to estimate levels of turbulence dissipation, by applying the Klymak–Moum slope spectrum method. However, many issues must be considered when using seismic images for estimating turbulence dissipation, especially sources of random and harmonic noise. This study examines the utility of seismic images for estimating turbulence dissipation in the ocean, using synthetic modeling and data from two field surveys, from the South China Sea and the eastern Pacific Ocean, including the first comparison of turbulence estimates from seismic images and from vertical shear. Realistic synthetic models that mimic the spectral characteristics of internal waves and turbulence show that reflector slope spectra accurately reproduce isopycnal slope spectra out to horizontal wavenumbers of ∼0.04 cpm, corresponding to horizontal wavelengths of 25 m. Using seismic reflector slope spectra requires recognition and suppression of shot-generated harmonic noise and restriction of data to frequency bands with signal-to-noise ratios greater than about 4. Calculation of slope spectra directly from Fourier transforms of the seismic data is necessary to determine the suitability of a particular dataset to turbulence estimation from reflector slope spectra. Turbulence dissipation estimated from seismic reflector displacements compares well to those from 10-m shear determined by coincident expendable current profiler (XCP) data, demonstrating that seismic images can produce reliable estimates of turbulence dissipation in the ocean, provided that random noise is minimal and harmonic noise is removed.

Current affiliation: BP America, Houston, Texas.

Corresponding author address: W. Steven Holbrook, Dept. of Geology and Geophysics, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072. E-mail: steveh@uwyo.edu

Abstract

Seismic images of oceanic thermohaline finestructure record vertical displacements from internal waves and turbulence over large sections at unprecedented horizontal resolution. Where reflections follow isopycnals, their displacements can be used to estimate levels of turbulence dissipation, by applying the Klymak–Moum slope spectrum method. However, many issues must be considered when using seismic images for estimating turbulence dissipation, especially sources of random and harmonic noise. This study examines the utility of seismic images for estimating turbulence dissipation in the ocean, using synthetic modeling and data from two field surveys, from the South China Sea and the eastern Pacific Ocean, including the first comparison of turbulence estimates from seismic images and from vertical shear. Realistic synthetic models that mimic the spectral characteristics of internal waves and turbulence show that reflector slope spectra accurately reproduce isopycnal slope spectra out to horizontal wavenumbers of ∼0.04 cpm, corresponding to horizontal wavelengths of 25 m. Using seismic reflector slope spectra requires recognition and suppression of shot-generated harmonic noise and restriction of data to frequency bands with signal-to-noise ratios greater than about 4. Calculation of slope spectra directly from Fourier transforms of the seismic data is necessary to determine the suitability of a particular dataset to turbulence estimation from reflector slope spectra. Turbulence dissipation estimated from seismic reflector displacements compares well to those from 10-m shear determined by coincident expendable current profiler (XCP) data, demonstrating that seismic images can produce reliable estimates of turbulence dissipation in the ocean, provided that random noise is minimal and harmonic noise is removed.

Current affiliation: BP America, Houston, Texas.

Corresponding author address: W. Steven Holbrook, Dept. of Geology and Geophysics, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072. E-mail: steveh@uwyo.edu
Save
  • Barnes, A. E., 2007: A tutorial on complex seismic trace analysis. Geophysics, 72, W33W43.

  • Biescas, B., Sallarès V. , Pelegrí J. L. , Machín F. , Carbonell R. , Buffett G. , Dañobeitia J. J. , and Calahorrano A. , 2008: Imaging meddy finestructure using multichannel seismic reflection data. Geophys. Res. Lett., 35, L11609, doi:10.1029/2008GL033971.

    • Search Google Scholar
    • Export Citation
  • Biescas, B., Armi L. , Sallarès V. , and Gracia E. , 2010: Seismic imaging of staircase layers below the Mediterranean Undercurrent. Deep-Sea Res. I, 57, 13451353.

    • Search Google Scholar
    • Export Citation
  • Claerbout, J., and Fomel S. , 2006: Image Estimation by Example: Geophysical Soundings Image Construction. Stanford Exploration Project, 308 pp.

  • D'Asaro, E. A., and Morison J. H. , 1992: Internal waves and mixing in the Arctic Ocean. Deep-Sea Res., 39A, S459S484.

  • Eakin, D., Holbrook W. S. , and Fer I. , 2011: Seismic reflection imaging of large-amplitude lee waves in the Caribbean Sea. Geophys. Res. Lett., 38, L21601, doi:10.1029/2011GL049157.

    • Search Google Scholar
    • Export Citation
  • Fer, I., Nandi P. , Holbrook W. S. , Schmitt R. W. , and Paramo P. , 2010: Seismic imaging of a thermohaline staircase in the western tropical North Atlantic. Ocean Sci., 6, 621631.

    • Search Google Scholar
    • Export Citation
  • Fortin, W. F. J., and Holbrook W. S. , 2009: Sound speed requirements for optimal imaging of seismic oceanography data. Geophys. Res. Lett., 36, L00D01, doi:10.1029/2009GL038991.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and Munk W. , 1975: Space-time scales of internal waves: Progress report. J. Geophys. Res., 80, 291297.

  • Gazdag, J., 1978: Wave equation migration with the phase-shift method. Geophysics, 43, 13421351.

  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94 (C7), 96869698.

  • Gregg, M. C., 1999: Uncertainties and limitations in measuring ε and χτ. J. Atmos. Oceanic Technol., 16, 14831490.

  • Gregg, M. C., Sanford T. B. , and Pinkel P. D. , 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., Wright J. , and Flatte S. M. , 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91 (C7), 84878495.

    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., and Fer I. , 2005: Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., 32, L15604, doi:10.1029/2005GL023733.

    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., Páramo P. , Pearse S. , and Schmitt R. W. , 2003: Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301, 821824.

    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., Fer I. , and Schmitt R. W. , 2009: Images of internal tides near the Norwegian continental slope. Geophys. Res. Lett., 36, L00D10, doi:10.1029/2009GL038909.

    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., Winters K. B. , and Koseff J. R. , 2008: Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech., 40, 169184.

    • Search Google Scholar
    • Export Citation
  • Katz, E., 1975: Tow spectra from MODE. J. Geophys. Res., 80, 11631167.

  • Klymak, J. M., and Moum J. N. , 2007a: Oceanic isopycnal slope spectra. Part I: Internal waves. J. Phys. Oceanogr., 37, 12151231.

  • Klymak, J. M., and Moum J. N. , 2007b: Oceanic isopycnal slope spectra. Part II: Turbulence. J. Phys. Oceanogr., 37, 12321245.

  • Kosloff, D., and Baysal E. , 1982: Forward modeling by a Fourier method. Geophysics, 47, 14021412.

  • Krahmann, G., Brandt P. , Klaeschen D. , and Reston T. , 2008: Mid-depth internal wave energy off the Iberian Peninsula estimated from seismic reflection data. J. Geophys. Res., 113, C12016, doi:10.1029/2007JC004678.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., Rosenfeld L. K. , Carter G. S. , and Gregg M. C. , 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 18901913.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., Firing E. , Hummon J. M. , Chereskin T. K. , and Thurnherr A. M. , 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., Watson A. J. , and Law C. S. , 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703.

    • Search Google Scholar
    • Export Citation
  • Lee, C. M., Kunze E. , Sanford T. B. , Nash J. D. , Merrifield M. A. , and Holloway P. E. , 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11651183.

    • Search Google Scholar
    • Export Citation
  • Loewenthal, D., Lu L. , Robertson R. , and Sherwood J. , 1976: The wave equation applied to migration. Geophys. Prospect., 24, 380399.

  • Lueck, R. G., and Mudge T. D. , 1997: Topographically induced mixing around a shallow seamount. Science, 276, 18311833.

  • Mirshak, R., Nedimović M. R. , Greenan B. J. W. , Ruddick B. R. , and Louden K. E. , 2010: Coincident reflection images of the Gulf Stream from seismic and hydrographic data. Geophys. Res. Lett., 37, L05602, doi:10.1029/2009GL042359.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., Caldwell D. R. , Nash J. D. , and Gunderson G. D. , 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and Wunsch C. , 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010.

  • Nakamura, Y., Noguchi T. , Tsuji T. , Itoh S. , Niino H. , and Matsuoka T. , 2006: Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio Extension front. Geophys. Res. Lett., 33, L23605, doi:10.1029/2006GL027437.

    • Search Google Scholar
    • Export Citation
  • Nandi, P., Holbrook W. S. , Pearse S. , Páramo P. , and Schmitt R. W. , 2004: Seismic reflection imaging of water mass boundaries in the Norwegian Sea. Geophys. Res. Lett., 31, L23311, doi:10.1029/2004GL021325.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., Alford M. H. , Kunze E. , Martini K. , and Kelly S. , 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., Polzin K. L. , King B. A. , Heywood K. J. , and Visbeck J. , 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local-rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389.

  • Polzin, K. L., Toole J. M. , and Schmitt R. W. , 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., Toole J. M. , Ledwell J. R. , and Schmitt R. W. R. W. , 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., Kunze E. , Hummon J. , and Firing E. , 2002: The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic Technol., 19, 205224.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., 1992: Intrusive mixing in a Mediterranean salt lens: Intrusion slopes and dynamical mechanisms. J. Phys. Oceanogr., 22, 12741285.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., Anis A. , and Thompson K. , 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol., 17, 15411555.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., Song H. B. , Dong C. Z. , and Pinheiro L. , 2009: Water column seismic images as maps of temperature gradient. Oceanography, 22, 192205.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357.

  • Sallarès, V., Biescas B. , Buffett G. , Carbonell R. , Dañobeitia J. J. , and Pelegrí J. L. , 2009: Relative contribution of temperature and salinity to ocean acoustic reflectivity. Geophys. Res. Lett., 36, L00D06, doi:10.1029/2009GL040187.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., Drever R. G. , Dunlap J. H. , and D'Asaro E. A. , 1982: Design, operation and performance of an expendable temperature and velocity profiler (XTVP). University of Washington, Applied Physics Laboratory Tech. Rep. APL-UW 8110, 164 pp.

  • Sheen, K. L., White N. J. , and Hobbs R. W. , 2009: Estimating mixing rates from seismic images of oceanic structure. Geophys. Res. Lett., 36, L00D04, doi:10.1029/2009GL040106.

    • Search Google Scholar
    • Export Citation
  • Sheriff, R. E., and Geldart L. P. , 1995: Exploration Seismology. Cambridge University Press, 592 pp.

  • St. Laurent, L., and Garrett C. , 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899.

  • Toole, J. M., Schmitt R. W. , Polzin K. L. , and Kunze E. , 1997: Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102 (C1), 947959.

    • Search Google Scholar
    • Export Citation
  • Vsemirnova, E., Hobbs R. , Serra N. , Klaeschen D. , and Quentel E. , 2009: Estimating internal wave spectra using constrained models of the dynamic ocean. Geophys. Res. Lett., 36, L00D07, doi:10.1029/2009GL039598.

    • Search Google Scholar
    • Export Citation
  • Watson, D. F., 1982: ACORD: Automatic contouring of raw data. Comput. Geosci., 8, 97101.

  • Wessel, P., and Smith W. H. F. , 1991: Free software helps map and display data. Eos, Trans. Amer. Geophys. Union, 72, 441446.

  • Wunsch, C., and Ferrari R. , 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314.

    • Search Google Scholar
    • Export Citation
  • Yamashita, M., Yokota K. , Fukao Y. , Kodaira S. , Miura S. , and Katsumata K. , 2011: Seismic reflection imaging of a warm core ring south of Hokkaido. Explor. Geophys., 42, 1824.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, O., 1987: Seismic Data Processing. Investigations in Geophysics Series, Vol. 2, Society of Exploration Geophysicists, 526 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 118 6
PDF Downloads 287 107 6