Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers

Ali Tokay Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ali Tokay in
Current site
Google Scholar
PubMed
Close
,
Walter A. Petersen NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia

Search for other papers by Walter A. Petersen in
Current site
Google Scholar
PubMed
Close
,
Patrick Gatlin NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Patrick Gatlin in
Current site
Google Scholar
PubMed
Close
, and
Matthew Wingo National Space Science and Technology Center, Earth System Science Center, The University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Matthew Wingo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An impact-type Joss–Waldvogel disdrometer (JWD), a two-dimensional video disdrometer (2DVD), and a laser optical OTT Particle Size and Velocity (PARSIVEL) disdrometer (PD) were used to measure the raindrop size distribution (DSD) over a 6-month period in Huntsville, Alabama. Comparisons indicate event rain totals for all three disdrometers that were in reasonable agreement with a reference rain gauge. In a relative sense, hourly composite DSDs revealed that the JWD was more sensitive to small drops (<1 mm), while the PD appeared to severely underestimate small drops less than 0.76 mm in diameter. The JWD and 2DVD measured comparable number concentrations of midsize drops (1–3 mm) and large drops (3–5 mm), while the PD tended to measure relatively higher drop concentrations at sizes larger than 2.44 mm in diameter. This concentration disparity tended to occur when hourly rain rates and drop counts exceeded 2.5 mm h−1 and 400 min−1, respectively. Based on interactions with the PD manufacturer, the partially inhomogeneous laser beam is considered the cause of the PD drop count overestimation. PD drop fall speeds followed the expected terminal fall speed relationship quite well, while the 2DVD occasionally measured slower drops for diameters larger than 2.4 mm, coinciding with events where wind speeds were greater than 4 m s−1. The underestimation of small drops by the PD had a pronounced effect on the intercept and shape of parameters of gamma-fitted DSDs, while the overestimation of midsize and larger drops resulted in higher mean values for PD integral rain parameters.

Corresponding author address: Ali Tokay, NASA Goddard Space Flight Center, Code 612.0, Greenbelt, MD 20771. E-mail: ali.tokay-1@nasa.gov

Abstract

An impact-type Joss–Waldvogel disdrometer (JWD), a two-dimensional video disdrometer (2DVD), and a laser optical OTT Particle Size and Velocity (PARSIVEL) disdrometer (PD) were used to measure the raindrop size distribution (DSD) over a 6-month period in Huntsville, Alabama. Comparisons indicate event rain totals for all three disdrometers that were in reasonable agreement with a reference rain gauge. In a relative sense, hourly composite DSDs revealed that the JWD was more sensitive to small drops (<1 mm), while the PD appeared to severely underestimate small drops less than 0.76 mm in diameter. The JWD and 2DVD measured comparable number concentrations of midsize drops (1–3 mm) and large drops (3–5 mm), while the PD tended to measure relatively higher drop concentrations at sizes larger than 2.44 mm in diameter. This concentration disparity tended to occur when hourly rain rates and drop counts exceeded 2.5 mm h−1 and 400 min−1, respectively. Based on interactions with the PD manufacturer, the partially inhomogeneous laser beam is considered the cause of the PD drop count overestimation. PD drop fall speeds followed the expected terminal fall speed relationship quite well, while the 2DVD occasionally measured slower drops for diameters larger than 2.4 mm, coinciding with events where wind speeds were greater than 4 m s−1. The underestimation of small drops by the PD had a pronounced effect on the intercept and shape of parameters of gamma-fitted DSDs, while the overestimation of midsize and larger drops resulted in higher mean values for PD integral rain parameters.

Corresponding author address: Ali Tokay, NASA Goddard Space Flight Center, Code 612.0, Greenbelt, MD 20771. E-mail: ali.tokay-1@nasa.gov
Save
  • Atlas, D., and Ulbrich C. W. , 2000: An observationally based conceptual model of warm oceanic convective rain in the tropics. J. Appl. Meteor., 39, 21652181.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., Ulbrich C. W. , Marks F. D. Jr., Amitai E. , and Williams C. R. , 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104 (D6), 61556169.

    • Search Google Scholar
    • Export Citation
  • Barthazy, E., Göke S. , Schefold R. , and Högl D. , 2004: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Oceanic Technol., 21, 14001416.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Rustemeier E. , Tokay A. , Blahak U. , and Simmer C. , 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 333344.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864.

  • Beard, K. V., Johnson D. B. , and Baumgardner D. , 1986: Aircraft observations of large raindrops in warm, shallow, convective clouds. Geophys. Res. Lett., 13 (10), 991994.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., Huang G. J. , Chandrasekar V. , and Gorgucci R. , 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633645.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Chandrasekar V. , Hubbert J. , Gorgucci E. , Randeu W. L. , and Schoenhuber M. , 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365.

    • Search Google Scholar
    • Export Citation
  • Campos, E., and Zawadzki I. , 2000: Instrument uncertainties in ZR relations. J. Appl. Meteor., 39, 10881102.

  • Cao, Q., Zhang G. , Brandes E. , Schuur T. , Ryzhkov A. , and Ikeda K. , 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., Petersen W. A. , Carey L. D. , Rutledge S. A. , and Silva Dias M. A. F. , 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM-LBA. J. Geophys. Res., 107 (10), doi:10.1029/2000JD000264.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, G., 1980: Comparison of results obtained with the VIDIAZ spectropluviometer and the Joss-Waldvogel rainfall disdrometer in a “rain of a thundery type.” J. Appl. Meteor.,19, 593–597.

  • Gunn, R., and Kinzer G. D. , 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248.

  • Hauser, D., Amayenc P. , Nutten B. , and Waldteufel P. , 1984: A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions. J. Atmos. Oceanic Technol., 1, 256269.

    • Search Google Scholar
    • Export Citation
  • Hou, A., Jackson G. S. , Kummerow C. , and Shepherd C. M. , 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed., Springer, 131–169.

  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and Waldvogel A. , 1967: Ein spectrograph für Niederschlasgstropfen mit automatischer Auswertung (A spectrograph for the automatic analysis of raindrops). Pure Appl. Geophys., 69, 240246.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., Iguchi T. , Kubota T. , Yoshida N. , Seto S. , Kwiatkowski J. , and Takayabu Y. N. , 2009a: Feasibility of raindrop size distribution parameter estimation with TRMM precipitation radar observations of shallow convection with a rain cell model. J. Meteor. Soc. Japan, 87A, 5366.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., Iguchi T. , Shimomai T. , and Kashiwagi N. , 2009b: Raindrop size distribution modeling from a statistical rain parameter relation and its application to the TRMM precipitation radar rain retrieval algorithm. J. Appl. Meteor. Climatol., 48, 716724.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2006: DEVEX-disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Adv. Water Resour., 29, 311325.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and Krajewski W. F. , 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617.

  • Lee, C. K., Lee G. W. , Zawadzki I. , and Kim K. E. , 2009: A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. J. Appl. Meteor. Climatol., 48, 270283.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and Zawadzki I. , 2005a: Variability of drop size distributions: Timescale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44, 241255.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and Zawadzki I. , 2005b: Variability of drop size distributions: Noise and noise filtering in disdrometric data. J. Appl. Meteor., 44, 634652.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and Joss J. , 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139.

    • Search Google Scholar
    • Export Citation
  • Mardiana, R., Iguchi T. , and Takahashi N. , 2004: A dual-frequency rain profiling method without the use of a surface reference technique. IEEE Trans. Geosci. Remote Sens., 42, 22142225.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and Liao L. , 2007: On the equivalence of dual-wavelength and dual-polarization equations for estimation of raindrop size distribution. J. Atmos. Oceanic Technol., 24, 806820.

    • Search Google Scholar
    • Export Citation
  • Miriovsky, B. J., and Coauthors, 2004: An experimental study of small-scale variability of radar reflectivity using disdrometer observations. J. Appl. Meteor., 43, 106118.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and Tokay A. , 2008: Retrieval of raindrop size distribution from simulated dual-frequency radar measurements. J. Appl. Meteor. Climatol., 47, 223239.

    • Search Google Scholar
    • Export Citation
  • Nakamura, K., and Iguchi T. , 2007: Dual-wavelength radar algorithm. Measuring Precipitation from Space, V. Levizanni, P. Bauer, and F. J. Turk, Eds., Springer, 225–234.

  • Nespor, V., Krajewski W. F. , and Kruger A. , 2000: Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 17, 14831492.

    • Search Google Scholar
    • Export Citation
  • Radhakrishna, B., and Narayana Rao T. , 2010: Differences in cyclonic raindrop size distribution from southwest to northeast monsoon season and from that of noncyclonic rain. J. Geophys. Res., 115, D16205, doi:10.1029/2009JD013355.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., Giangrande S. E. , Melkinov V. M. , and Schuur T. J. , 2005: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155.

    • Search Google Scholar
    • Export Citation
  • Salles, C., and Creutin J. D. , 2003: Instrument uncertainties in ZR relationships and raindrop fall velocities. J. Appl. Meteor., 42, 279290.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., and Lacaux J. , 1995: The shape of averaged drop size distributions. J. Atmos. Sci., 52, 10701083.

  • Scarchilli, G., Gorgucci E. , and Chandrasekar V. , 1996: Consistency of polarization diversity measurement of rainfall. IEEE Trans. Geosci. Remote Sens., 34, 2226.

    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., Lammer G. , and Randeu W. L. , 2007: One decade of imaging precipitation measurement by 2D-video-disdrometer. Adv. Geosci., 10, 8590.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., 1990: The measurement of raindrop size distributions using a small Doppler radar. J. Atmos. Oceanic Technol., 7, 255268.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., Petersen W. A. , Tokay A. , Schultz C. , and Gatlin P. , 2011: Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv. Geosci., 30, 39.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., Bringi V. N. , Carey L. D. , Gatlin P. , Schultz E. , and Petersen W. A. , 2012: Estimating the accuracy of polarimetric radar-based retrievals of drop size distribution parameters and rain rate: An application of error variance separation using radar-derived spatial correlations. J. Hydrometeor., 13, 10661079.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and Short D. A. , 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and Bashor P. G. , 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor., 49, 23482365.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Kruger A. , and Krajewski W. F. , 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Kruger A. , Krajewski W. , Kucera P. A. , and Pereira Filho A. J. , 2002: Measurements of drop size distribution in the southwestern Amazon basin. J. Geophys. Res.,107, 8052, doi:10.1029/2001JD000355.

  • Tokay, A., Wolff D. B. , Wolff K. R. , and Bashor P. , 2003: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20, 14601477.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Bashor P. G. , and Wolff K. R. , 2005: Error characteristics of rainfall measurements by collocated Joss–Waldvogel disdrometers. J. Atmos. Oceanic Technol., 22, 513527.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Bashor P. G. , and McDowell V. L. , 2010: Comparison of rain gauge measurements in mid-Atlantic region. J. Hydrometeor., 11, 553565.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C., and Atlas D. , 1998: Rain microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Zhang G. , and Brandes E. , 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor., 43, 217230.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., Kruger A. , Gage K. S. , Tokay A. , Cifelli R. , Krajewski W. F. , and Kummerow C. , 2000: Comparison of simultaneous raindrop size distributions estimated from two surface disdrometers and a UHF profiler. Geophys. Res. Lett., 27, 17631766.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., Vivekanandan V. , and Brandes E. , 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2941 973 148
PDF Downloads 1522 328 22