A Generalized Method for Estimating the Structure of the Equatorial Atlantic Cold Tongue: Application to Drifter Observations

Verena Hormann Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Verena Hormann in
Current site
Google Scholar
PubMed
Close
,
Rick Lumpkin NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Rick Lumpkin in
Current site
Google Scholar
PubMed
Close
, and
Renellys C. Perez Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Renellys C. Perez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A generalized method is developed to determine the position of the Atlantic northern cold tongue front across its zonal extent from satellite sea surface temperature (SST) data. Previous approaches estimated the frontal position subjectively or individually, calling for a more objective technique that is suitable for large datasets. The developed methodology is based on a median frontal SST, and associated positional uncertainties are on the order of 0.3° latitude for the period 1998–2011. Frontal characteristics are generally consistent with tropical instability waves (TIWs) and interannual variations are large. Application to drifter observations shows how the new methodology can be used to better understand circulation features near the northern cold tongue front. A drifter pair deployed on the eastern side of a passing TIW crest north of the front revealed that the trajectories of the drifters were clearly influenced by the shape of the front and they did not cross the front, but rather stayed close together about 2.5° north of the front. In a more complete analysis using all available drifters near the Atlantic northern cold tongue front, only about 12% of the trajectories crossed the front. Analyses in an along- and cross-frontal frame of reference complement isopycnal coordinate mapping, and tropical Atlantic drifter velocities averaged in frontal coordinates indicate a broadened shear zone between the northern branch of the South Equatorial Current and North Equatorial Countercurrent as well as meridional convergence near the front.

Current affiliation: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California.

Corresponding author address: Verena Hormann, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Mail Code 0213, La Jolla, CA 92093. E-mail: vhormann@ucsd.edu

Abstract

A generalized method is developed to determine the position of the Atlantic northern cold tongue front across its zonal extent from satellite sea surface temperature (SST) data. Previous approaches estimated the frontal position subjectively or individually, calling for a more objective technique that is suitable for large datasets. The developed methodology is based on a median frontal SST, and associated positional uncertainties are on the order of 0.3° latitude for the period 1998–2011. Frontal characteristics are generally consistent with tropical instability waves (TIWs) and interannual variations are large. Application to drifter observations shows how the new methodology can be used to better understand circulation features near the northern cold tongue front. A drifter pair deployed on the eastern side of a passing TIW crest north of the front revealed that the trajectories of the drifters were clearly influenced by the shape of the front and they did not cross the front, but rather stayed close together about 2.5° north of the front. In a more complete analysis using all available drifters near the Atlantic northern cold tongue front, only about 12% of the trajectories crossed the front. Analyses in an along- and cross-frontal frame of reference complement isopycnal coordinate mapping, and tropical Atlantic drifter velocities averaged in frontal coordinates indicate a broadened shear zone between the northern branch of the South Equatorial Current and North Equatorial Countercurrent as well as meridional convergence near the front.

Current affiliation: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California.

Corresponding author address: Verena Hormann, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Mail Code 0213, La Jolla, CA 92093. E-mail: vhormann@ucsd.edu
Save
  • Brandt, P., and Coauthors, 2011: Equatorial upper-ocean dynamics and their interaction with the West African monsoon. Atmos. Sci. Lett., 12, 2430, doi:10.1002/asl.287.

    • Search Google Scholar
    • Export Citation
  • Caltabiano, A. C. V., Robinson I. S. , and Pezzi L. P. , 2005: Multi-year satellite observations of instability waves in the tropical Atlantic Ocean. Ocean Sci., 1, 97112, doi:10.5194/os-1-97-2005.

    • Search Google Scholar
    • Export Citation
  • Deans, S. R., 1983: The Radon Transform and Some of its Applications. John Wiley and Sons, 289 pp.

  • Drévillon, M., and Coauthors, 2008: The GODAE/Mercator-Ocean global ocean forecasting system: Results, applications and prospects. J. Oper. Oceanogr., 1, 5157.

    • Search Google Scholar
    • Export Citation
  • Düing, W., and Coauthors, 1975: Meanders and long waves in the equatorial Atlantic. Nature, 257, 280284, doi:10.1038/257280a0.

  • Dutrieux, P., Menkes C. E. , Vialard J. , Flament P. , and Blanke B. , 2008: Lagrangian study of tropical instability vortices in the Atlantic. J. Phys. Oceanogr., 38, 400417.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1987: Better bootstrap confidence intervals. J. Amer. Stat. Assoc., 82, 171185.

  • Evans, W., Strutton P. G. , and Chavez F. P. , 2009: Impact of tropical instability waves on nutrient and chlorophyll distributions in the equatorial Pacific. Deep-Sea Res. I, 56, 178188, doi:10.1016/j.dsr.2008.08.008.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., Grodsky S. A. , Carton J. A. , and McPhaden M. J. , 2003: Seasonal mixed layer heat budget of the tropical Atlantic Ocean. J. Geophys. Res., 108, 3146, doi:10.1029/2002JC001584.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., Carton J. A. , and Chassignet E. P. , 2004: Tropical instability vortices in the Atlantic Ocean. J. Geophys. Res., 109, C03029, doi:10.1029/2003JC001942.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., Wentz F. J. , Mears C. A. , and Smith D. K. , 2004: In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109, C04021, doi:10.1029/2003JC002092.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., Carton J. A. , Provost C. , Servain J. , Lorenzzetti J. A. , and McPhaden M. J. , 2005: Tropical instability waves at 0°N, 23°W in the Atlantic: A case study using Pilot Research Moored Array in the Tropical Atlantic (PIRATA) mooring data. J. Geophys. Res., 110, C08010, doi:10.1029/2005JC002941.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., and Paul C. A. , 1984: Genesis and effects of long waves in the equatorial Pacific. J. Geophys. Res., 89 (C6), 10 43110 440.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., and Poulain P.-M. , 1996: Quality control and interpolations of WOCE-TOGA drifter data. J. Atmos. Oceanic Technol., 13, 900909.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., de Vries P. , and Friocourt Y. , 2003: Sources of the Equatorial Undercurrent in the Atlantic in a high-resolution ocean model. J. Phys. Oceanogr., 33, 677693.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., Malanotte-Rizzoli P. , and Busalacchi A. , 2004: Tropical instability waves in the Atlantic Ocean. Ocean Modell., 7, 145163, doi:10.1016/S1463-5003(03)00042-8.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. S., 1996: A convergent instability front in the central tropical Pacific. Deep-Sea Res. II, 43, 753778, doi:10.1016/0967-0645(96)00034-3.

    • Search Google Scholar
    • Export Citation
  • Kennan, S. C., and Flament P. J. , 2000: Observations of a tropical instability vortex. J. Phys. Oceanogr., 30, 22772301.

  • Lee, T., Lagerloef G. , Gierach M. M. , Kao H.-Y. , Yueh S. , and Dohan K. , 2012: Aquarius reveals salinity structure of tropical instability waves. Geophys. Res. Lett., 39, L12610, doi:10.1029/2012GL052232.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., and Reverdin G. , 1987: Long waves in the equatorial Atlantic Ocean during 1983. J. Geophys. Res., 92 (C3), 28352842.

  • Lumpkin, R., and Pazos M. , 2007: Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, A. Griffa et al. Eds., Cambridge University Press, 39–67.

  • Lumpkin, R., Grodsky S. A. , Centurioni L. , Rio M.-H. , Carton J. A. , and Lee D. , 2013: Removing spurious low-frequency variability in drifter velocities. J. Atmos. Oceanic Technol., 30, 353360.

    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., and Coauthors, 2002: A whirling ecosystem in the equatorial Atlantic. Geophys. Res. Lett., 29, 1553, doi:10.1029/2001GL014576.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 2001: The World Ocean surface circulation. Ocean Circulation and Climate, International Geophysics Series, Vol. 77, Academic Press, 193–204.

  • Perez, R. C., Cronin M. F. , and Kessler W. S. , 2010: Tropical cells and a secondary circulation near the northern front of the equatorial Pacific cold tongue. J. Phys. Oceanogr., 40, 20912106.

    • Search Google Scholar
    • Export Citation
  • Perez, R. C., Lumpkin R. , Johns W. E. , Foltz G. R. , and Hormann V. , 2012: Interannual variations of Atlantic tropical instability waves. J. Geophys. Res., 117, C03011, doi:10.1029/2011JC007584.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1978: Instabilities of zonal equatorial currents, 2. J. Geophys. Res., 83 (C7), 36793682.

  • Qiao, L., and Weisberg R. H. , 1995: Tropical instability wave kinematics: Observations from the Tropical Instability Wave Experiment. J. Geophys. Res., 100 (C5), 86778693.

    • Search Google Scholar
    • Export Citation
  • Steger, J. M., and Carton J. A. , 1991: Long waves and eddies in the tropical Atlantic Ocean: 1984–1990. J. Geophys. Res., 96 (C8), 15 16115 171.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and Weingartner T. J. , 1988: Instability waves in the equatorial Atlantic Ocean. J. Phys. Oceanogr., 18, 16411657.

  • Wu, Q., and Bowman K. P. , 2007a: Interannual variations of tropical instability waves observed by the Tropical Rainfall Measuring Mission. Geophys. Res. Lett., 34, L09701, doi:10.1029/2007GL029719.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., and Bowman K. P. , 2007b: Multiyear satellite observations of the atmospheric response to Atlantic tropical instability waves. J. Geophys. Res., 112, D19104, doi:10.1029/2007JD008627.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671586.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 740 526 163
PDF Downloads 123 41 2