Near–Sea Surface Temperature Stratification from SVP Drifters

G. Reverdin LOCEAN/IPSL (CNRS/UPMC/IRD/MNHN), Paris, France

Search for other papers by G. Reverdin in
Current site
Google Scholar
PubMed
Close
,
S. Morisset LOCEAN/IPSL (CNRS/UPMC/IRD/MNHN), Paris, France

Search for other papers by S. Morisset in
Current site
Google Scholar
PubMed
Close
,
H. Bellenger LOCEAN/IPSL (CNRS/UPMC/IRD/MNHN), Paris, France

Search for other papers by H. Bellenger in
Current site
Google Scholar
PubMed
Close
,
J. Boutin LOCEAN/IPSL (CNRS/UPMC/IRD/MNHN), Paris, France

Search for other papers by J. Boutin in
Current site
Google Scholar
PubMed
Close
,
N. Martin LOCEAN/IPSL (CNRS/UPMC/IRD/MNHN), Paris, France

Search for other papers by N. Martin in
Current site
Google Scholar
PubMed
Close
,
P. Blouch CMM, CNRM, Brest, France

Search for other papers by P. Blouch in
Current site
Google Scholar
PubMed
Close
,
J. Rolland CMM, CNRM, Brest, France

Search for other papers by J. Rolland in
Current site
Google Scholar
PubMed
Close
,
F. Gaillard Laboratoire de Physique des Océans, IFREMER, Brest, France

Search for other papers by F. Gaillard in
Current site
Google Scholar
PubMed
Close
,
P. Bouruet-Aubertot LOCEAN/IPSL (CNRS/UPMC/IRD/MNHN), Paris, France

Search for other papers by P. Bouruet-Aubertot in
Current site
Google Scholar
PubMed
Close
, and
B. Ward School of Physics, National University of Ireland, Galway, Ireland

Search for other papers by B. Ward in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study describes how the hull temperature (Ttop) measurements from multisensor surface velocity program (SVP) drifters can be combined with other measurements to provide quantitative information on near-surface vertical temperature stratification during large daily cycles. First, Ttop is compared to the temperature measured at 17 -cm depth from a float tethered to the SVP drifter. These 2007–12 SVP drifters present a larger daily cycle by 1%–3% for 1°–2°C daily cycle amplitudes, with a maximum difference close to the local noon. The difference could result from flow around the SVP drifter in the presence of temperature stratification in the top 20 cm of the water column but also from a small influence of internal drifter temperature on Ttop. The largest differences were found for small drifters (Technocean) for very large daily cycles, as expected from their shallower measurements. The vertical stratification is estimated by comparing these hull data with the deeper T or conductivity C measurements from Sea-Bird sensors 25 (Pacific Gyre) to 45 cm (MetOcean) below the top temperature sensor. The largest stratification is usually found near local noon and early afternoon. For a daily cycle amplitude of 1°C, these differences with the upper level are in the range of 3%–5% of the daily cycle for the Pacific Gyre drifters and 6%–10% for MetOcean drifters with the largest values occurring when the midday sun elevation is lowest. The relative differences increase for larger daily cycles, and the vertical profiles become less linear. These estimated stratifications are well above the uncertainty on Ttop.

Corresponding author address: G. Reverdin, Expérimentation et Analyse Numérique, Laboratoire d'Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, Case 100, 4 Place Jussieu, 75252 Paris CEDEX 05, France. E-mail: gilles.reverdin@locean-ipsl.upmc.fr

Abstract

This study describes how the hull temperature (Ttop) measurements from multisensor surface velocity program (SVP) drifters can be combined with other measurements to provide quantitative information on near-surface vertical temperature stratification during large daily cycles. First, Ttop is compared to the temperature measured at 17 -cm depth from a float tethered to the SVP drifter. These 2007–12 SVP drifters present a larger daily cycle by 1%–3% for 1°–2°C daily cycle amplitudes, with a maximum difference close to the local noon. The difference could result from flow around the SVP drifter in the presence of temperature stratification in the top 20 cm of the water column but also from a small influence of internal drifter temperature on Ttop. The largest differences were found for small drifters (Technocean) for very large daily cycles, as expected from their shallower measurements. The vertical stratification is estimated by comparing these hull data with the deeper T or conductivity C measurements from Sea-Bird sensors 25 (Pacific Gyre) to 45 cm (MetOcean) below the top temperature sensor. The largest stratification is usually found near local noon and early afternoon. For a daily cycle amplitude of 1°C, these differences with the upper level are in the range of 3%–5% of the daily cycle for the Pacific Gyre drifters and 6%–10% for MetOcean drifters with the largest values occurring when the midday sun elevation is lowest. The relative differences increase for larger daily cycles, and the vertical profiles become less linear. These estimated stratifications are well above the uncertainty on Ttop.

Corresponding author address: G. Reverdin, Expérimentation et Analyse Numérique, Laboratoire d'Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, Case 100, 4 Place Jussieu, 75252 Paris CEDEX 05, France. E-mail: gilles.reverdin@locean-ipsl.upmc.fr
Save
  • Bellenger, H., and Duvel J.-P. , 2009: An analysis of tropical ocean diurnal warm layers. J. Climate, 22, 36293646.

  • Bellenger, H., Takayabu Y. N. , Ushiyama T. , and Yoneyama K. , 2010: Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. Mon. Wea. Rev., 138, 24262433.

    • Search Google Scholar
    • Export Citation
  • Bernie, D. S., Woolnough S. J. , Slingo J. M. , and Guilyardi E. , 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 11901202.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., Zeng X. , Misra V. , and Beljaars A. , 2008: Integration of a prognostic sea surface skin temperature scheme into weather and climate models. J. Geophys. Res., 113, D21117, doi:10.1029/2008JD010607.

    • Search Google Scholar
    • Export Citation
  • Castro, S. L., Wick G. A. , and Emery W. J. , 2012: Evaluation of the relative performance of sea surface temperature measurements from different types of drifting and moored buoys using satellite-derived reference products. J. Geophys. Res., 117, C02029, doi:10.1029/2011JC007472.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., Baldwin D. J. , Schlüssel P. , and Reynolds R. W. , 2001: Accuracy of in situ surface temperatures used to calibrate infrared satellite measurements. J. Geophys. Res., 106, 23872405, doi:10.1029/2000JC000246.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Rogers D. P. , Edson J. B. , and Young G. S. , 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled–Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 (C2), 37473764.

    • Search Google Scholar
    • Export Citation
  • Filipiak, M. J., Merchant C. J. , Kettle H. , and Le Borgne P. , 2012: An empirical model for the statistics of sea surface diurnal warming. Ocean Sci., 8, 197209, doi:10.5194/os-8-197-2012.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., Minnett P. J. , Le Borgne P. , and Merchant C. J. , 2008: Multi-satellite measurements of large diurnal warming events. Geophys. Res. Lett., 35, L22602, doi:10.1029/2008GL035730.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., Minnett P. J. , and Ward B. , 2009: Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming. J. Geophys. Res., 114, C07017, doi:10.1029/2008JC004825.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., Rickenback T. M. , Rutledge S. A. , Ciesielski P. E. , and Schubert W. H. , 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and Kawamura H. , 2000: Study on a platform effect in the in situ sea surface temperature observations under weak wind and clear sky conditions using numerical models. J. Atmos. Oceanic Technol., 17, 185196.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and Kawamura H. , 2002: Evaluation of the diurnal warming of sea surface temperature using satellite derived marine meteorological data. J. Oceanogr., 58, 805814.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and Wada A. , 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., Ando K. , and Kawamura H. , 2009: Distortion of near-surface seawater temperature structure by a moored-buoy hull and its effect on skin temperature and heat flux estimates. Sensors, 9, 61196130, doi:10.3390/s90806119.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., Brohan P. , and Tett S. F. B. , 2007: A global climatology of the diurnal variations in sea-surface temperature and implications for MSU temperature trends. Geophys. Res. Lett., 34, L05712, doi:10.1029/2006GL028920.

    • Search Google Scholar
    • Export Citation
  • Le Borgne, P., Legendre G. , and Péré S. , 2012: Comparison of MSG/SEVIRI and drifting buoy derived diurnal warming estimates. Remote Sens. Environ., 124, 622626, doi:10.1016/j.rse.2012.06.015.

    • Search Google Scholar
    • Export Citation
  • Marullo, S., Santoleri R. , Banzon V. , Evans R. H. , and Guarracino M. , 2010: A diurnal-cycle resolving sea surface temperature product for the tropical Atlantic. J. Geophys. Res., 115, C05011, doi:10.1029/2009JC005466.

    • Search Google Scholar
    • Export Citation
  • McGillis, W. R., Asher W. E. , Wanninkhof R. , Jessup A. T. , and Feely R. A. , 2004: Introduction to special section: Air–sea exchange. J. Geophys. Res., 109, C08S01, doi:10.1029/2004JC002605.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Filipiak M. J. , Le Borgne P. , Roquet H. , Autret E. , Piollé J.-F. , and Lavender S. , 2008: Diurnal warm-layer events in the western Mediterranean and European shelf seas. Geophys. Res. Lett., 35, L04601, doi:10.1029/2007GL033071.

    • Search Google Scholar
    • Export Citation
  • O'Carroll, A. G., Eyre J. R. , and Saunders R. W. , 2008: Three-way error analysis between AATSR, AMSR-E, and in situ sea surface temperature observations. J. Atmos. Oceanic Technol., 25, 11971207.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. H., Shapiro M. A. , and Miller E. , 2000: The mesoscale structure of a nocturnal dryline and a frontal dayline merger. Mon. Wea. Rev., 128, 38243838.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., Blouch P. , Boutin J. , Niiler P. , Rolland J. , Scuba W. , Lourenço A. , and Rios A. , 2007: Surface salinity measurements—COSMOS 2005 experiment in the Bay of Biscay. J. Atmos. Oceanic Technol., 24, 16431654.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., and Coauthors, 2010: Drifters surface temperature measurements. J. Atmos. Oceanic Technol., 27, 14031409.

  • Shinoda, T., 2005: Impact of the diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J. Climate, 18, 26282636.

    • Search Google Scholar
    • Export Citation
  • Stuart-Menteth, A. C., Robinson I. S. , and Challenor P. G. , 2003: A global study of diurnal warming using satellite-derived sea surface temperature. J. Geophys. Res., 108, 3155, doi:10.1029/2002JC001534.

    • Search Google Scholar
    • Export Citation
  • Ward, B., 2006: Near-surface ocean temperature. J. Geophys. Res., 111, C02005, doi:10.1029/2004JC002689.

  • Ward, B., and Fristedt T. , 2008: Air-sea interaction profiler: Autonomous upper ocean measurements. Proc. 2008 IEEE/OES US/EU-Baltic Int. Symp., Talinn, Estonia, IEEE, 1–8, doi:10.1109/BALTIC.2008.4625494.

    • Search Google Scholar
    • Export Citation
  • Ward, B., Wanninkhof R. , McGillis W. R. , Jessup A. T. , DeGrandpre M. D. , Hare J. E. , and Edson J. B. , 2004a: Biases in the air–sea flux of CO2 resulting from ocean surface temperature gradients. J. Geophys. Res., 109, C08S08, doi:10.1029/2003JC001800.

    • Search Google Scholar
    • Export Citation
  • Ward, B., Wanninkhof R. , Minnett P. J. , and Head M. J. , 2004b: SkinDeEP: A profiling instrument for upper-decameter sea surface measurements. J. Atmos. Oceanic Technol., 21, 207222.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. F. J., Vitard F. , and Balmaseda M. A. , 2007: The role of the ocean in the Madden–Julian Oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, R., Tanba S. , and Souma T. , 1995: Sea surface effects on the sea surface temperature estimation by remote sensing. J. Remote Sens., 16, 227238.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 920 619 109
PDF Downloads 204 60 8