• Anagnostou, M. N., Kalogiros J. , Anagnostou E. N. , Tarolli M. , Papadopoulos A. , and Borga M. , 2010: Performance evaluation of high-resolution rainfall estimation by X-band dual-polarization radar for flash flood applications in mountainous basins. J. Hydrol., 394, 416.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., Bringi V. N. , and Liu L. , 1995: Rain-rate estimation in the presence of hail using S-band specific differential phase and other radar parameters. J. Appl. Meteor., 34, 404410.

    • Search Google Scholar
    • Export Citation
  • Baldini, L., Gorgucci E. , Chandrasekar V. , and Peterson W. , 2005: Implementations of CSU hydrometeor classification scheme for C-band polarimetric radars. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P11R.4. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_95865.htm.]

  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Chandrasekar, V., Bringi V. N. , Balakrishnan N. , and Zrnić D. S. , 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621629.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Hou A. , Smith E. , Bringi V. N. , Rutledge S. A. , Gorgucci E. , Petersen W. A. , and Jackson G. S. , 2008: Potential role of dual-polarization radar in the validation of satellite precipitation measurements: Rationale and opportunities. Bull. Amer. Meteor. Soc., 89, 11271145.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Keränen R. , Lim S. , and Moisseev D. , 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and Chandrasekar V. , 2010: Dual-polarization radar rainfall estimation. Rainfall: State of the Science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 105–126.

  • Dolan, B., and Rutledge S. A. , 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088.

    • Search Google Scholar
    • Export Citation
  • Giuli, D., Gherardelli M. , Freni A. , Seliga T. A. , and Aydin K. , 1991: Rainfall and clutter discrimination by means of dual-linear polarization radar measurements. J. Atmos. Oceanic Technol., 8, 777789.

    • Search Google Scholar
    • Export Citation
  • Golestani, Y., Chandrasekar V. , and Bringi V. N. , 1989: Inter-comparison of multiparameter radar measurements. Preprints, 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 309314.

  • Gourley, J. J., Tabary P. , and du Châtelet J. Parent , 2007: A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations. J. Atmos. Oceanic Technol., 24, 14391451.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., and Bringi V. N. , 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648.

    • Search Google Scholar
    • Export Citation
  • Keranen, R., Saltikoff E. , Chandrasekar V. , Lim S. , Holmes J. , and Selzler J. , 2007: Real-time hydrometeor classification for the operational forecasting environment. Preprints, 33rd Conf. on Radar Meteorology, Cairns, QLD, Australia, P11.B11. [Available online at https://ams.confex.com/ams/33Radar/techprogram/paper_123476.htm.]

  • Lim, S., and Chandrasekar V. , 2011: Identification of rain/ice mixture from dual polarization weather radar. Proc. 2011 IEEE International Geoscience and Remote Sensing Symp. (IGARSS), IEEE, 23532356 , doi:10.1109/IGARSS.2011.6049682.

  • Lim, S., Chandrasekar V. , and Bringi V. N. , 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in-situ verification. IEEE Trans. Geosci. Remote Sens., 43, 792801.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and Chandrasekar V. , 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010: Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Oceanic Technol., 27, 122134.

  • Matrosov, S. Y., 2011: Polarimetric radar–based estimates of spatial variability in characteristic sizes of raindrops in stratiform rainfall. J. Appl. Meteor. Climatol., 50, 25142525.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Clark K. A. , Martner B. E. , and Tokay A. , 2002: X-band polarimetric radar measurements of rainfall. J. Appl. Meteor., 41, 941952.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Kingsmill D. E. , Martner B. E. , and Ralph F. M. , 2005: The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeor., 6, 248262.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Cifelli R. , Kennedy P. C. , Nesbitt S. W. , Rutledge S. A. , Bringi V. N. , and Martner B. E. , 2006: A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band radar frequencies. J. Atmos. Oceanic Technol., 23, 952963.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Clark K. A. , and Kingsmill D. E. , 2007: A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteor. Climatol., 46, 154166.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Cifelli R. , and Gochis D. , 2013: Measurements of heavy convective rainfall in the presence of hail in flood-prone areas using an X-band polarimetric radar. J. Appl. Meteor. Climatol., 52, 395407.

    • Search Google Scholar
    • Export Citation
  • Park, H., Ryzhkov A. V. , Zrnić D. S. , and Kim K. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and Zrnić D. S. , 1996: Assessment of rainfall measurements that uses specific differential phase. J. Appl. Meteor., 35, 20802090.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Schuur T. J. , Burgess B. W. , Heinselman P. L. , Giangrande S. , and Zrnić D. S. , 2005: The Joint Polarization Experiment polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Zhang P. , and Krause J. , 2011: Simultaneous measurements of heavy rain using S-band and C-band polarimetric radar. Preprints, 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 17.1. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191242.html.]

  • Sachidananda, M., and Zrnić D. S. , 1986: Characteristics of echoes from alternately polarized transmission. CIMMS Rep. 71, 64 pp.

  • Sekhon, R. S., and Srivastava R. C. , 1971: Doppler radar observations of drop size distributions in a thunderstorm. J. Atmos. Sci., 28, 983994.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and Bringi V. N. , 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., Bluestein H. B. , Zhang G. , and Frasier S. J. , 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., Zrnić D. S. , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372.

    • Search Google Scholar
    • Export Citation
  • Testud, J., Amayenc P. , and Marzoug M. , 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 322356.

    • Search Google Scholar
    • Export Citation
  • Testud, J., Oury S. , Black R. A. , Amayenc P. , and Dou X. , 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Atmos. Meteor., 40, 11181140.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Yates D. N. , and Brandes E. A. , 1999a: The influence of terrain on rainfall estimates from radar reflectivity and specific propagation phase observations. J. Atmos. Oceanic Technol., 16, 837845.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Zrnić D. S. , Ellis S. M. , Oye R. , Ryzhkov A. , and Straka J. M. , 1999b: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Chandrasekar V. , 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25692582.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Chandrasekar V. , 2010: Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. J. Atmos. Oceanic Technol., 27, 16651676.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Ryzhkov A. V. , 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454464.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Balakrishnan N. , Ziegler C. L. , Bringi V. N. , Aydin K. , and Matejka T. , 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678693.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Ryzhkov A. V. , Straka J. , Liu Y. , and Vivekanandan J. , 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 6 6 6

Precipitation Classification and Quantification Using X-Band Dual-Polarization Weather Radar: Application in the Hydrometeorology Testbed

View More View Less
  • 1 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, and NOAA/Earth System Research Laboratory, Boulder, Colorado, and Korea Institute of Construction Technology, Ilsan, South Korea
  • | 2 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 3 Colorado State University, Fort Collins, Colorado
  • | 4 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado
Restricted access

Abstract

This paper presents new methods for rainfall estimation from X-band dual-polarization radar observations along with advanced techniques for quality control, hydrometeor classification, and estimation of specific differential phase. Data collected from the Hydrometeorology Testbed (HMT) in orographic terrain of California are used to demonstrate the methodology. The quality control and hydrometeor classification are specifically developed for X-band applications, which use a “fuzzy logic” technique constructed from the magnitude of the copolar correlation coefficient and the texture of differential propagation phase. In addition, an improved specific differential phase retrieval and rainfall estimation method are also applied. The specific differential phase estimation is done for both the melting region and rain region, where it uses a conventional filtering method for the melting region and a self-consistency-based method that distributes the total differential phase consistent with the reflectivity factor for the rain region. Based on the specific differential phase, rainfall estimations were computed using data obtained from the NOAA polarimetric X-band radar for hydrometeorology (HYDROX) and evaluated using HMT rain gauge observations. The results show that the methodology works well at capturing the high-frequency rainfall variations for the events analyzed herein and can be useful for mountainous terrain applications.

Corresponding author address: Sanghun Lim, Korea Institute of Construction Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 411-712, South Korea. E-mail: slim@kict.re.kr

Abstract

This paper presents new methods for rainfall estimation from X-band dual-polarization radar observations along with advanced techniques for quality control, hydrometeor classification, and estimation of specific differential phase. Data collected from the Hydrometeorology Testbed (HMT) in orographic terrain of California are used to demonstrate the methodology. The quality control and hydrometeor classification are specifically developed for X-band applications, which use a “fuzzy logic” technique constructed from the magnitude of the copolar correlation coefficient and the texture of differential propagation phase. In addition, an improved specific differential phase retrieval and rainfall estimation method are also applied. The specific differential phase estimation is done for both the melting region and rain region, where it uses a conventional filtering method for the melting region and a self-consistency-based method that distributes the total differential phase consistent with the reflectivity factor for the rain region. Based on the specific differential phase, rainfall estimations were computed using data obtained from the NOAA polarimetric X-band radar for hydrometeorology (HYDROX) and evaluated using HMT rain gauge observations. The results show that the methodology works well at capturing the high-frequency rainfall variations for the events analyzed herein and can be useful for mountainous terrain applications.

Corresponding author address: Sanghun Lim, Korea Institute of Construction Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 411-712, South Korea. E-mail: slim@kict.re.kr
Save