• Aeppli, C., Holmstrand H. , Andersson P. , and Gustafsson Ö. , 2010: Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal. Chem., 82, 420426.

    • Search Google Scholar
    • Export Citation
  • Aeppli, C., Bastviken D. , Andersson P. , and Gustafsson Ö. , 2013: Chlorine isotope effects and composition of naturally produced organochlorines from chloroperoxidases, flavin-dependent halogenases, and in forest soil. Environ. Sci. Technol., 47, 68676871.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and Coauthors, 1996: Methyl halide emissions from savanna fires in southern Africa. J. Geophys. Res., 101, 23 60323 613.

    • Search Google Scholar
    • Export Citation
  • Bahlmann, E., Weinberg I. , Seifert R. , Tubbesing C. , and Michaelis W. , 2011: A high volume sampling system for isotope determination of volatile halocarbons and hydrocarbons. Atmos. Meas. Tech., 4, 20732086.

    • Search Google Scholar
    • Export Citation
  • Bill, M., Rhew R. C. , Weiss R. F. , and Goldstein A. H. , 2002: Carbon isotope ratios of methyl bromide and methyl chloride emitted from a coastal salt marsh. Geophys. Res. Lett., 29, doi:10.1029/2001GL012946.

    • Search Google Scholar
    • Export Citation
  • Bill, M., Conrad M. E. , and Goldstein A. H. , 2004: Stable carbon isotope composition of atmospheric methyl bromide. Geophys. Res. Lett., 31, L04109, doi:10.1029/2003GL018639.

    • Search Google Scholar
    • Export Citation
  • Borrmann, S., Solomon S. , Avallone L. , Toohey D. , and Baumgardner D. , 1997: On the occurrence of ClO in cirrus clouds and volcanic aerosol in the tropopause region. Geophys. Res. Lett., 24, 20112014.

    • Search Google Scholar
    • Export Citation
  • Brenninkmeijer, C. A. M., Janssen C. , Kaiser J. , Rockmann T. , Rhee T. S. , and Assonov S. S. , 2003: Isotope effects in the chemistry of atmospheric trace compounds. Chem. Rev., 103, 51255161.

    • Search Google Scholar
    • Export Citation
  • Butler, J. H., 2000: Atmospheric chemistry: Better budgets for methyl halides? Nature, 403, 260261.

  • Carrizo, D., Unger M. , Holmstrand H. , Andersson P. , Gustafsson Ö. , Sylva S. P. , and Reddy C. M. , 2011: Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances. Environ. Chem., 8, 127132.

    • Search Google Scholar
    • Export Citation
  • Coplen, T. B., 2011: Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom., 25, 25382560.

    • Search Google Scholar
    • Export Citation
  • Dessens, O., Zeng G. , Warwick N. , and Pyle J. , 2009: Short-lived bromine compounds in the lower stratosphere; impact of climate change on ozone. Atmos. Sci. Lett., 10, 201206.

    • Search Google Scholar
    • Export Citation
  • Eggenkamp, H. G. M., and Coleman M. L. , 2000: Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples. Chem. Geol., 167, 393402.

    • Search Google Scholar
    • Export Citation
  • Harper, D. B., 1985: Halomethane from halide ion—A highly efficient fungal conversion of environmental significance. Nature, 315, 5557.

    • Search Google Scholar
    • Export Citation
  • Hoefs, J., 2009: Stable Isotope Geochemistry. 6th ed. Springer-Verlag, 285 pp.

  • Holmstrand, H., Unger M. , Carrizo D. , Andersson P. , and Gustafsson Ö. , 2010: Compound-specific bromine isotope analysis of brominated diphenyl ethers using gas chromatography multiple collector/inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom., 24, 21352142.

    • Search Google Scholar
    • Export Citation
  • Horst, A., Holmstrand H. , Andersson P. , Andersson A. , Carrizo D. , Thornton B. F. , and Gustafsson Ö. , 2011: Compound-specific bromine isotope analysis of methyl bromide using gas chromatography hyphenated with inductively coupled plasma multiple-collector mass spectrometry. Rapid Commun. Mass Spectrom., 25, 24252432.

    • Search Google Scholar
    • Export Citation
  • Hu, L., Yvon-Lewis S. A. , Liu Y. , Salisbury J. E. , and O'Hern J. E. , 2010: Coastal emissions of methyl bromide and methyl chloride along the eastern Gulf of Mexico and the East Coast of the United States. Global Biogeochem. Cycles, 24, GB1007, doi:10.1029/2009GB003514.

    • Search Google Scholar
    • Export Citation
  • Huff, A. K., Cliff S. S. , and Thiemens M. H. , 1997: Portable cryogenic collection of atmospheric nitrous oxide and carbon monoxide for high-precision isotopic analysis. Anal. Chem., 69, 42674270.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, R., Long A. , Bentley H. , and Davis S. , 1984: Natural chlorine isotope variations. Nature, 309, 338340.

  • Keppler, F., Kalin R. M. , Harper D. B. , McRoberts W. C. , and Hamilton J. T. G. , 2004: Carbon isotope anomaly in the major plant C-1 pool and its global biogeochemical implications. Biogeosciences, 1, 123131.

    • Search Google Scholar
    • Export Citation
  • Keppler, F., Harper D. B. , Rockmann T. , Moore R. M. , and Hamilton J. T. G. , 2005: New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos. Chem. Phys., 5, 24032411.

    • Search Google Scholar
    • Export Citation
  • Khan, M. A. H., Rhew R. C. , Whelan M. E. , Zhou K. , and Deverel S. , 2011: Methyl halide and chloroform emissions from a subsiding Sacramento–San Joaquin Delta island converted to rice fields. Atmos. Environ., 45, 977985.

    • Search Google Scholar
    • Export Citation
  • Khan, M. A. H., Whelan M. E. , and Rhew R. C. , 2012: Effects of temperature and soil moisture on methyl halide and chloroform fluxes from drained peatland pasture soils. J. Environ. Monit., 14, 241249.

    • Search Google Scholar
    • Export Citation
  • King, D. B., Butler J. H. , Montzka S. A. , Yvon-Lewis S. A. , and Elkins J. W. , 2000: Implications of methyl bromide supersaturations in the temperate North Atlantic Ocean. J. Geophys. Res., 105, 19 76319 769.

    • Search Google Scholar
    • Export Citation
  • Kurylo, M. J., and Coauthors, 1998: Short-lived ozone-related compounds. Scientific assessment of ozone depletion: 1998, World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 44, 2.1–2.56.

  • Laturnus, F., 2001: Marine macroalgae in polar regions as natural sources for volatile organohalogens. Environ. Sci. Pollut. Res., 8, 103108.

    • Search Google Scholar
    • Export Citation
  • Laturnus, F., Adams F. C. , and Wiencke C. , 1998: Methyl halides from Antarctic macroalgae. Geophys. Res. Lett., 25, 773776.

  • Law, K. S., and Coauthors, 2007: Halogenated very short-lived substances. Scientific assessment of ozone depletion: 2006, World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 50, 2.1–2.57.

  • Lu, X. L., Yang G. P. , Song G. S. , and Zhang L. , 2010: Distributions and fluxes of methyl chloride and methyl bromide in the East China Sea and the southern Yellow Sea in autumn. Mar. Chem., 118, 7584.

    • Search Google Scholar
    • Export Citation
  • Manley, S. L., and Dastoor M. N. , 1987: Methyl halide (CH3X) production from the giant kelp, Macrocystis, and estimates of global CH3X production by kelp. Limnol. Oceanogr., 32, 709715.

    • Search Google Scholar
    • Export Citation
  • McCauley, S. E., Goldstein A. H. , and DePaolo D. J. , 1999: An isotopic approach for understanding the CH3Br budget of the atmosphere. Proc. Natl. Acad. Sci. USA, 96, 10 00610 009.

    • Search Google Scholar
    • Export Citation
  • Mead, M. I., Khan M. A. H. , Nickless G. , Greally B. R. , Tainton D. , Pitman T. , and Shallcross D. E. , 2008: Leaf cutter ants: A possible missing source of biogenic halocarbons. Environ. Chem., 5, 510.

    • Search Google Scholar
    • Export Citation
  • Miller, L. G., Kalin R. M. , McCauley S. E. , Hamilton J. T. G. , Harper D. B. , Millet D. B. , Oremland R. S. , and Goldstein A. H. , 2001: Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria. Proc. Natl. Acad. Sci. USA, 98, 58335837.

    • Search Google Scholar
    • Export Citation
  • Montzka, S. A., and Coauthors, 2011: Ozone-depleting substances (ODSs) and related chemicals. Scientific assessment of ozone depletion: 2010, World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 52, 1–1.108.

  • Numata, M., Nakamura N. , Koshikawa H. , and Terashima Y. , 2002: Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria. Environ. Sci. Technol., 36, 43894394.

    • Search Google Scholar
    • Export Citation
  • Paneth, P., 2003: Chlorine kinetic isotope effects on enzymatic dehalogenations. Acc. Chem. Res., 36, 120126.

  • Redeker, K. R., Andrews J. , Fisher F. , Sass R. , and Cicerone R. J. , 2002: Interfield and intrafield variability of methyl halide emissions from rice paddies. Global Biogeochem. Cycles, 16, 1125, doi:10.1029/2002GB001874.

    • Search Google Scholar
    • Export Citation
  • Rhew, R. C., and Mazéas O. , 2010: Gross production exceeds gross consumption of methyl halides in northern California salt marshes. Geophys. Res. Lett., 37, L18813, doi:10.1029/2010GL044341.

    • Search Google Scholar
    • Export Citation
  • Rhew, R. C., Miller B. R. , and Weiss R. F. , 2000: Natural methyl bromide and methyl chloride emissions from coastal salt marshes. Nature, 403, 292295.

    • Search Google Scholar
    • Export Citation
  • Rhew, R. C., Teh Y. A. , and Abel T. , 2007: Methyl halide and methane fluxes in the northern Alaskan coastal tundra. J. Geophys. Res., 112, G02009, doi:10.1029/2006JG000314.

    • Search Google Scholar
    • Export Citation
  • Rudolph, J., Lowe D. C. , Martin R. J. , and Clarkson T. S. , 1997: A novel method for compound specific determination of δ13C in volatile organic compounds at ppt levels in ambient air. Geophys. Res. Lett., 24, 659662.

    • Search Google Scholar
    • Export Citation
  • Saito, T., and Yokouchi Y. , 2008: Stable carbon isotope ratio of methyl chloride emitted from glasshouse-grown tropical plants and its implication for the global methyl chloride budget. Geophys. Res. Lett., 35, L08807, doi:10.1029/2007GL032736.

    • Search Google Scholar
    • Export Citation
  • Saito, T., Yokouchi Y. , Kosugi Y. , Tani M. , Philip E. , and Okuda T. , 2008: Methyl chloride and isoprene emissions from tropical rain forest in Southeast Asia. Geophys. Res. Lett., 35, L19812, doi:10.1029/2008GL035241.

    • Search Google Scholar
    • Export Citation
  • Salawitch, R. J., Weisenstein D. K. , Kovalenko L. J. , Sioris C. E. , Wennberg P. O. , Chance K. , Ko M. K. W. , and McLinden C. A. , 2005: Sensitivity of ozone to bromine in the lower stratosphere. Geophys. Res. Lett., 32, L05811, doi:10.1029/2004GL021504.

    • Search Google Scholar
    • Export Citation
  • Schauffler, S. M., Heidt L. E. , Pollock W. H. , Gilpin T. M. , Vedder J. F. , Solomon S. , Lueb R. A. , and Atlas E. L. , 1993: Measurements of halogenated organic compounds near the tropical tropopause. Geophys. Res. Lett., 20, 25672570.

    • Search Google Scholar
    • Export Citation
  • Schauffler, S. M., and Coauthors, 2003: Chlorine budget and partitioning during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE). J. Geophys. Res., 108, 4173, doi:10.1029/2001JD002040.

    • Search Google Scholar
    • Export Citation
  • Shouakar-Stash, O., Alexeev S. V. , Frape S. K. , Alexeeva L. P. , and Drimmie R. J. , 2007: Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian platform, Russia. Appl. Geochem., 22, 589605.

    • Search Google Scholar
    • Export Citation
  • Simmonds, P. G., and Coauthors, 2004: AGAGE observations of methyl bromide and methyl chloride at Mace Head, Ireland, and Cape Grim, Tasmania, 1998–2001. J. Atmos. Chem., 47, 243269.

    • Search Google Scholar
    • Export Citation
  • Singh, H. B., Salas L. J. , and Stiles R. E. , 1983: Methyl halides in and over the eastern Pacific (40°N–32°S). J. Geophys. Res., 88, 36843690.

    • Search Google Scholar
    • Export Citation
  • Sinnhuber, B.-M., and Coauthors, 2005: Global observations of stratospheric bromine monoxide from SCIAMACHY. Geophys. Res. Lett., 32, L20810, 10.1029/2005GL023839.

    • Search Google Scholar
    • Export Citation
  • Sive, B. C., and Coauthors, 2005: Development of a cryogen-free concentration system for measurements of volatile organic compounds. Anal. Chem., 77, 69896998.

    • Search Google Scholar
    • Export Citation
  • Sylva, S. P., Ball L. , Nelson R. K. , and Reddy C. M. , 2007: Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom., 21, 33013305.

    • Search Google Scholar
    • Export Citation
  • Teh, Y. A., Mazeas O. , Atwood A. R. , Abel T. , and Rhew R. C. , 2009: Hydrologic regulation of gross methyl chloride and methyl bromide uptake from Alaskan Arctic tundra. Global Change Biol., 15, 330345.

    • Search Google Scholar
    • Export Citation
  • Thornton, B. F., Toohey D. W. , Avallone L. M. , Harder H. , Martinez M. , Simpas J. B. , Brune W. H. , and Avery M. A. , 2003: In situ observations of ClO near the winter polar tropopause. J. Geophys. Res., 108, 8333, doi:10.1029/2002JD002839.

    • Search Google Scholar
    • Export Citation
  • Thornton, B. F., and Coauthors, 2007: Chlorine activation near the midlatitude tropopause. J. Geophys. Res., 112, D18306, doi:10.1029/2006JD007640.

    • Search Google Scholar
    • Export Citation
  • UNEP, 2012: Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer. 9th ed. United Nations Environment Programme, 708 pp.

  • Varner, R. K., Crill P. M. , and Talbot R. W. , 1999: Wetlands: A potentially significant source of atmospheric methyl bromide and methyl chloride. Geophys. Res. Lett., 26, 24332435.

    • Search Google Scholar
    • Export Citation
  • von Hobe, M., and Coauthors, 2011: Evidence for heterogeneous chlorine activation in the tropical UTLS. Atmos. Chem. Phys., 11, 241256.

    • Search Google Scholar
    • Export Citation
  • Williams, J., Wang N. Y. , Cicerone R. J. , Yagi K. , Kurihara M. , and Terada F. , 1999: Atmospheric methyl halides and dimethyl sulfide from cattle. Global Biogeochem. Cycles, 13, 485491.

    • Search Google Scholar
    • Export Citation
  • Yvon-Lewis, S. A., Saltzman E. S. , and Montzka S. A. , 2009: Recent trends in atmospheric methyl bromide: Analysis of post-Montreal Protocol variability. Atmos. Chem. Phys., 9, 59635974.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 1 1 1

A High-Volume Cryosampler and Sample Purification System for Bromine Isotope Studies of Methyl Bromide

View More View Less
  • 1 Department of Applied Environmental Science, Department of Geological Sciences, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 2 Department of Applied Environmental Science, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 3 Laboratory for Isotope Geology, Swedish Museum of Natural History, Stockholm, Sweden
  • | 4 Department of Geological Sciences, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 5 Department of Applied Environmental Science, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Restricted access

Abstract

A system was developed for collecting from the ambient atmosphere the methyl halides CH3Cl and CH3Br in quantities sufficient for chlorine and bromine isotope analysis. The construction and operation of the novel cryogenic collection system (cryosampler) and sample purification system developed for this task are described. This study demonstrates the capability of the cryosampler by quantifying the CH3Cl and CH3Br collected from atmospheric samples and the nonfractionating bromine isotope fingerprint of CH3Br from synthetic air samples of controlled composition. An optimized cryosampler operation time of 4 h at a flow rate of 15 L min−1 is applied to yield the nearly 40 ng required for subsequent δ81Br-CH3Br analyses. The sample purification system is designed around a packed column gas chromatography–quadropole–mass spectrometry (GCqMS) system with three additional cryotraps and backflushing capacity. The system's suitability was tested by observing both the mass recovery and the lack of Δ81Br isotope fractionation induced during sample purification under varying flow rates and loading scenarios. To demonstrate that the entire system samples and dependably delivers CH3Br to the isotope analysis system without inducing isotope fractionation, diluted synthetic air mixtures prepared from standard gases were processed through the entire system, yielding a Δ81Br-CH3Br of +0.03‰ ± 0.10‰ relative to their starting composition. Finally, the combined cryosampler–purification and analysis system was applied to demonstrate the first-ever δ81Br-CH3Br in the ambient atmosphere with two samples collected in the autumn of 2011, yielding −0.08‰ ± 0.43‰ and +1.75‰ ± 0.13‰ versus standard mean ocean bromide for samples collected at a suburban Stockholm, Sweden, site.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-12-00228.s1.

Current affiliation: Department of Analytical Chemistry, University of Zaragoza, Zaragoza, Spain.

Corresponding author address: Brett F. Thornton, Dept. of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden. E-mail: brett.thornton@geo.su.se

Abstract

A system was developed for collecting from the ambient atmosphere the methyl halides CH3Cl and CH3Br in quantities sufficient for chlorine and bromine isotope analysis. The construction and operation of the novel cryogenic collection system (cryosampler) and sample purification system developed for this task are described. This study demonstrates the capability of the cryosampler by quantifying the CH3Cl and CH3Br collected from atmospheric samples and the nonfractionating bromine isotope fingerprint of CH3Br from synthetic air samples of controlled composition. An optimized cryosampler operation time of 4 h at a flow rate of 15 L min−1 is applied to yield the nearly 40 ng required for subsequent δ81Br-CH3Br analyses. The sample purification system is designed around a packed column gas chromatography–quadropole–mass spectrometry (GCqMS) system with three additional cryotraps and backflushing capacity. The system's suitability was tested by observing both the mass recovery and the lack of Δ81Br isotope fractionation induced during sample purification under varying flow rates and loading scenarios. To demonstrate that the entire system samples and dependably delivers CH3Br to the isotope analysis system without inducing isotope fractionation, diluted synthetic air mixtures prepared from standard gases were processed through the entire system, yielding a Δ81Br-CH3Br of +0.03‰ ± 0.10‰ relative to their starting composition. Finally, the combined cryosampler–purification and analysis system was applied to demonstrate the first-ever δ81Br-CH3Br in the ambient atmosphere with two samples collected in the autumn of 2011, yielding −0.08‰ ± 0.43‰ and +1.75‰ ± 0.13‰ versus standard mean ocean bromide for samples collected at a suburban Stockholm, Sweden, site.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-12-00228.s1.

Current affiliation: Department of Analytical Chemistry, University of Zaragoza, Zaragoza, Spain.

Corresponding author address: Brett F. Thornton, Dept. of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden. E-mail: brett.thornton@geo.su.se

Supplementary Materials

    • Supplemental Materials (DOCX 322.09 KB)
Save