Scientific Assessment of the SWIFT Instrument Design

Peyman Rahnama York University, Toronto, Canada

Search for other papers by Peyman Rahnama in
Current site
Google Scholar
PubMed
Close
,
William A. Gault York University, Toronto, Canada

Search for other papers by William A. Gault in
Current site
Google Scholar
PubMed
Close
,
Ian C. McDade York University, Toronto, Canada

Search for other papers by Ian C. McDade in
Current site
Google Scholar
PubMed
Close
, and
Gordon G. Shepherd York University, Toronto, Canada

Search for other papers by Gordon G. Shepherd in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Stratospheric Wind Interferometer for Transport Studies (SWIFT) is a proposed satellite instrument. SWIFT is an imaging field-widened Doppler Michelson interferometer. It observes a thermal IR atmospheric emission line in a limb-viewing geometry in order to measure stratospheric winds and stratospheric ozone concentration profiles with global coverage during both day and night. SWIFT has the capability of improving the knowledge of the dynamics of the stratosphere and global distribution of and global transport of ozone. The target wind and ozone accuracies are 3 m s−1 and 5%–10%, respectively. The instrument is a follow up to the highly successful Canada–France Wind-Imaging Interferometer (WINDII) instrument on NASA's Upper Atmosphere Research Satellite (UARS). To assess the suitability of the method of Doppler imaging Michelson interferometry for the measurement of stratospheric wind and ozone using the SWIFT instrument, a scientific assessment of the instrument performance was undertaken using forward and inverse modeling and error analyses. This paper is aimed at determining the technical and scientific feasibility of the SWIFT instrument and its ability to meet the science requirements. This paper also briefly describes the SWIFT experiment, the data retrieval algorithms, and technical challenges in stratospheric wind measurements. Meeting the wind accuracy requirement imposes tight requirements on instrument thermal stability, filter monitoring, and determination of reference phase calibration. The SWIFT instrument design shows a strong level of dependence on the knowledge of atmospheric N2O concentration. The presence of N2O as an interfering species degrades the SWIFT performance at all altitudes with the largest impact especially for altitudes below 30 km.

Corresponding author address: Peyman Rahnama, Department of Earth and Space Science and Engineering, York University, 4700 Keele Street, Toronto ON M3J 1P3, Canada. E-mail: peymanrahnama@hotmail.com

Abstract

The Stratospheric Wind Interferometer for Transport Studies (SWIFT) is a proposed satellite instrument. SWIFT is an imaging field-widened Doppler Michelson interferometer. It observes a thermal IR atmospheric emission line in a limb-viewing geometry in order to measure stratospheric winds and stratospheric ozone concentration profiles with global coverage during both day and night. SWIFT has the capability of improving the knowledge of the dynamics of the stratosphere and global distribution of and global transport of ozone. The target wind and ozone accuracies are 3 m s−1 and 5%–10%, respectively. The instrument is a follow up to the highly successful Canada–France Wind-Imaging Interferometer (WINDII) instrument on NASA's Upper Atmosphere Research Satellite (UARS). To assess the suitability of the method of Doppler imaging Michelson interferometry for the measurement of stratospheric wind and ozone using the SWIFT instrument, a scientific assessment of the instrument performance was undertaken using forward and inverse modeling and error analyses. This paper is aimed at determining the technical and scientific feasibility of the SWIFT instrument and its ability to meet the science requirements. This paper also briefly describes the SWIFT experiment, the data retrieval algorithms, and technical challenges in stratospheric wind measurements. Meeting the wind accuracy requirement imposes tight requirements on instrument thermal stability, filter monitoring, and determination of reference phase calibration. The SWIFT instrument design shows a strong level of dependence on the knowledge of atmospheric N2O concentration. The presence of N2O as an interfering species degrades the SWIFT performance at all altitudes with the largest impact especially for altitudes below 30 km.

Corresponding author address: Peyman Rahnama, Department of Earth and Space Science and Engineering, York University, 4700 Keele Street, Toronto ON M3J 1P3, Canada. E-mail: peymanrahnama@hotmail.com
Save
  • CSA, 2006: Chinook mission requirement document (MRD). CSA-Chinook-RD-0001 Revision C, 50 pp.

  • Durand, Y., Culoma A. , Meynart R. , Moranais D. , and Fabre F. , 2004: Pre-development of a direct detection Doppler wind lidar for ADM/Aeolus mission. Sensors, Systems, and Next-Generation Satellites VII, J. B. Laurie et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5234), 354–363.

  • ESA, 2002: SWIFT mission requirement document (MRD). ESD/SWIFT/MRD/002/TW, 103 pp.

  • Garcia, R. R., and Randel W. J. , 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci.,65, 2731–2739.

  • Harlander, J. M., Englert C. R. , Babcock D. D. , and Roesler F. L. , 2010: Design and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations. Opt. Express, 18, 26 43026 440, doi:10.1364/OE.18.026430.

    • Search Google Scholar
    • Export Citation
  • Hays, P. B., Killeen T. L. , and Kennedy B. C. , 1981: Fabry-Perot interferometer on dynamics explorer. Space Sci. Instrum., 5, 395416.

    • Search Google Scholar
    • Export Citation
  • Killeen, T. L., and Coauthors, 1999: TIMED Doppler interferometer (TIDI). Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 3756), 289–301.

  • Lahoz, W. A., Brugge R. , Jackson D. R. , Migliorini S. , Swinbank R. , Lary D. , and Lee A. , 2005: An observing system simulation experiment to evaluate the scientific merit of wind and ozone measurements from the future SWIFT instrument. Quart. J. Roy. Meteor. Soc., 131, 502523.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Menard R. , Riishojgaard L. P. , Cohn S. E. , and Rood R. B. , 1998: A study on assimilating potential vorticity data. Tellus, 50A, 490506.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., Skinner W. R. , Hays P. B. , Burrage M. D. , Lieberman R. S. , Marshall A. R. , and Gell D. A. , 1996: Measurements of stratospheric winds by the high resolution Doppler imager. J. Geophys. Res., 101 (D6), 10 35110 364.

    • Search Google Scholar
    • Export Citation
  • Rahnama, P., 2003: Simulation and analysis studies of SWIFT measurements. M.S. thesis, Dept. of Earth and Space Science, York University, 174 pp.

  • Rahnama, P., 2010: Mission simulation and instrument design for the Stratospheric Wind Interferometer for Transport Studies (SWIFT) instrument. Ph.D. dissertation, York University, 258 pp.

  • Rahnama, P., Rochon Y. J. , McDade I. C. , Shepherd G. G. , Gault W. A. , and Scott A. , 2006: Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation. J. Atmos. Oceanic Technol., 23, 753769.

    • Search Google Scholar
    • Export Citation
  • Rahnama, P., Gault W. A. , McDade I. C. , and Shepherd G. G. , 2012: Onboard calibration and monitoring for the SWIFT instrument. Meas. Sci. Technol.,23, 105801, doi:10.1088/0957-0233/23/10/105801.

  • Rahnama, P., Gault W. A. , McDade I. C. , and Shepherd G. G. , 2013: Design requirements for the SWIFT instrument. Meas. Sci. Technol.,24, 015801, doi:10.1088/0957-0233/24/1/015801.

  • Rochon, Y. J., Rahnama P. , and McDade I. C. , 2006: Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part II: Retrieval method and expected performance. J. Atmos. Oceanic Technol., 23, 770784.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific Publishing, 238 pp.

  • Rothman, L. S., and Coauthors, 2003: The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiat. Transfer, 82, 544.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 2009: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 110, 533572.

    • Search Google Scholar
    • Export Citation
  • Shepherd, G. G., 2002: Spectral Imaging of the Atmosphere. International Geophysics Series, Vol. 82, Academic Press, 324 pp.

  • Shepherd, G. G., and Coauthors, 1993: WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite. J. Geophys. Res., 98, 10 72510 750.

    • Search Google Scholar
    • Export Citation
  • Shepherd, G. G., McDade I. C. , Gault W. A. , Rochon Y. J. , Scott A. , Rowlands N. , and Buttner G. , 2001: The Stratospheric Wind Interferometer for Transport Studies (SWIFT). Adv. Space Res., 27, 10711079.

    • Search Google Scholar
    • Export Citation
  • Shepherd, G. G., Solheim B. H. , Brown S. , Gault W. A. , and Miller I. J. , 2012a: Integration of spatial heterodyne spectroscopy with the Stratospheric Wind Interferometer for Transport studies (SWIFT). Can. Aeronaut. Space J., 58, 115121, doi:10.5589/q12-010.

    • Search Google Scholar
    • Export Citation
  • Shepherd, G. G., and Coauthors, 2012b: The Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite: A 20 year perspective. Rev. Geophys., 50, RG2007, doi:10.1029/2012RG000390.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and McLandress C. , 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci.,68, 784–797.

  • Träger, F., 2012: Springer Handbook of Lasers and Optics. Springer Handbooks Series, Vol. 32, 1694 pp.

  • Wu, Q., Ortland D. A. , Solomon S. C. , Skinner W. R. , and Niciejewski R. J. , 2011: Global distribution, seasonal, and inter-annual variations of mesospheric semidiurnal tide observed by TIMED TIDI. J. Atmos. Sol.-Terr. Phys., 73, 24822502.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 77 4
PDF Downloads 131 52 7