• Apel, R. J., 1994: An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res., 99 (C8), 16 26916 290.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., 1990: Equilibrium spectra of wind waves. J. Phys. Oceanogr., 20, 966984.

  • Banner, M. L., Jones I. S. F. , and Trinder J. C. , 1989: Wavenumber spectra of short gravity waves. J. Fluid Mech., 198, 321344.

  • Bjerkaas, A. W., and Riedel F. W. , 1979: Proposed model for the elevation spectrum of a wind-roughened sea surface. Johns Hopkins University Applied Physics Laboratory Tech. Memo. TG 1328, 32 pp.

  • Bock, E. J., and Hara T. , 1995: Optical measurements of capillary-gravity wave spectra using a scanning laser slope gauge. J. Atmos. Oceanic Technol., 12, 395403.

    • Search Google Scholar
    • Export Citation
  • Bréon, F. M., and Henriot N. , 2006: Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geophys. Res., 111, C06005, doi:10.1029/2005JC003343.

    • Search Google Scholar
    • Export Citation
  • Caponi, E. A., Crawford D. R. , Yuen H. C. , and Saffman P. G. , 1988: Modulation of radar backscatter from the ocean by a variable surface current. J. Geophys. Res., 93 (C10), 12 24912 263.

    • Search Google Scholar
    • Export Citation
  • Chaudhry, A. H., and Moore R. K. , 1984: Tower-based backscatter measurements of the sea. IEEE J. Oceanic Eng., 9, 309316.

  • Cox, C. S., 1958: Measurements of slopes of high-frequency wind waves. J. Mar. Res., 16, 198223.

  • Cox, C. S., and Munk W. , 1954: Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13, 198227.

  • Crombie, D. D., 1955: Doppler spectrum of sea echo at 13-56 Mc./s. Nature, 175, 681682.

  • Dias, F., and Kharif C. , 1999: Nonlinear gravity and capillary-gravity waves. Annu. Rev. Fluid Mech., 31, 301346.

  • Donelan, M. A., 1979: On the fraction of wind momentum retained by waves. Mar. Forecasting, J. C. J. Nihoul, Ed., Elsevier, 141–159.

  • Donelan, M. A., 1982: The dependence of the aerodynamic drag coefficient on wave parameters. Preprints, First Int. Conf. on Meteorology and Air–Sea Interaction, The Hague, Netherlands, Amer. Meteor. Soc., 381–387.

  • Donelan, M. A., 1990: Air–sea interaction. The Sea, B. LeMehaute and D. M. Hanes, Eds., Ocean Engineering Science, Vol. 9, John Wiley and Sons, 239–292.

  • Donelan, M. A., and Pierson W. J. , 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92, 49715029.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Hamilton J. , and Hui W. H. , 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, 315A, 509562.

    • Search Google Scholar
    • Export Citation
  • Donnelly, W. J., Carswell J. R. , McIntosh R. E. , Chang P. S. , Wilkerson J. , Marks F. , and Black P. G. , 1999: Revised ocean backscatter models at C and Ku band under high-wind conditions. J. Geophys. Res., 104 (C5), 11 48511 497.

    • Search Google Scholar
    • Export Citation
  • Dulov, V. A., and Kosnik M. V. , 2009: Effects of three-wave interactions in the gravity-capillary range of wind waves. Izv. Atmos. Oceanic Phys., 45, 380391.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., and Vesecky J. F. , 1985: A physical radar cross-section model for a wind-driven sea with swell. IEEE J. Oceanic Eng., 10, 445451.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., and Kizu S. , 2002: Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers. J. Oceanogr., 58, 477486.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., Kawamura H. , and Toba Y. , 1987: Fine structure of laboratory wind-wave surfaces studied using an optical method. Bound.-Layer Meteor., 39, 133151.

    • Search Google Scholar
    • Export Citation
  • Elfouhaily, T., Chapron B. , Katsaros K. , and Vandemark D. , 1997: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res., 102 (C7), 15 78115 796.

    • Search Google Scholar
    • Export Citation
  • Felizardo, F., and Melville W. K. , 1995: Correlations between ambient noise and the ocean surface wave field. J. Phys. Oceanogr., 25, 513532.

    • Search Google Scholar
    • Export Citation
  • Fung, A. K., and Lee K. K. , 1982: A semi-empirical sea-spectrum model for scattering coefficient estimation. IEEE J. Oceanic Eng., 7, 166176.

    • Search Google Scholar
    • Export Citation
  • García-Nava, H., Ocampo-Torres F. J. , Osuna P. , and Donelan M. A. , 2009: Wind stress in the presence of swell under moderate to strong wind conditions. J. Geophys. Res., 114, C12008, doi:10.1029/2009JC005389.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., 1990: Bulk parameterizations for the wind stress and heat fluxes. Current Theory, G. L. Geernaert and W. J. Plant, Eds., Surface Waves and Fluxes, Vol. 1, Kluwer Academic, 91–172.

  • Hara, T., Bock E. J. , Edson J. B. , and McGillis W. R. , 1998: Observation of short wind waves in coastal waters. J. Phys. Oceanogr., 28, 14251438.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z.,A8 (Suppl.), 1–95.

  • Hauser, D., Caudal G. , Guimbard S. , and Mouche A. A. , 2008: A study of the slope probability density function of the ocean waves from radar observations. J. Geophys. Res., 113, C02006, doi:10.1029/2007JC004264.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., Stoffelen A. , and de Haan S. , 2007: An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res., 112, C03006, doi:10.1029/2006JC003743.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., Powell M. D. , and Pietrzak J. D. , 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Hughes, B. A., and Grant H. L. , 1978: The effect of internal waves on surface wind waves 1. Experimental measurements. J. Geophys. Res., 83 (C1), 443454.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 1997: A study of the wavenumber spectra of short water waves in the ocean. Part II: Spectral model and mean square slope. J. Atmos. Oceanic Technol., 14, 11741186.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005: Wave number spectrum and mean square slope of intermediate-scale ocean surface waves. J. Geophys. Res., 110, C10029, doi:10.1029/2005JC003002.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2006: Doppler frequency shift in ocean wave measurements: Frequency downshift of a wavenumber component by advection of background wave orbital velocity. J. Geophys. Res., 111, C06033, doi:10.1029/2005JC003072.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2007: Spectral signature of wave breaking in surface wave components of intermediate length scale. J. Mar. Syst., 66, 28–37.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2008: Observations of swell influence on ocean surface roughness. J. Geophys. Res., 113, C12024, doi:10.1029/2008JC005075.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2011: A note on the ocean surface roughness spectrum. J. Atmos. Oceanic Technol., 28, 436443.

  • Hwang, P. A., 2012: Foam and roughness effects on passive microwave remote sensing of the ocean. IEEE Trans. Geosci. Remote Sens., 50, 29782985, doi:10.1109/TGRS.2011.2177666.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Wang D. W. , 2001: Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum. J. Phys. Oceanogr., 31, 13461360.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Wang D. W. , 2004a: An empirical investigation of source term balance of small scale surface waves. Geophys. Res. Lett., 31, L15301, doi:10.1029/2004GL020080.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Wang D. W. , 2004b: Field measurements of duration limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr.,34, 2316–2326; Corrigendum, 35, 268–270.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Plant W. J. , 2010: An analysis of the effects of swell and roughness spectra on microwave backscatter from the ocean. J. Geophys. Res., 115, C04014, doi:10.1029/2009JC005558.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Trizna D. B. , and Wu J. , 1993: Spatial measurements of short wind waves using a scanning slope sensor. Dyn. Atmos. Oceans, 20, 123.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Atakturk S. , Sletten M. A. , and Trizna D. B. , 1996: A study of the wavenumber spectra of short water waves in the ocean. J. Phys. Oceanogr., 26, 12661285.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Teague W. J. , Jacobs G. A. , and Wang D. W. , 1998: A statistical comparison of wind speed, wave height and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res., 103 (C5), 10 45110 468.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Sletten M. A. , and Toporkov J. V. , 2008: Breaking wave contribution to low grazing angle radar backscatter from the ocean surface. J. Geophys. Res., 113, C09017, doi:10.1029/2008JC004752.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Zhang B. , Toporkov J. V. , and Perrie W. , 2010: Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. J. Geophys. Res.,115, C08019, doi:10.1029/2009JC005995; Corrigendum, 115, C11099, doi:10.1029/2010JC006653

  • Hwang, P. A., Burrage D. M. , Wang D. W. , and Wesson J. C. , 2011a: An advanced roughness spectrum for computing microwave L-band emissivity in sea surface salinity retrieval. IEEE Geosci. Remote Sens. Lett., 8, 547551, doi:10.1109/LGRS.2010.2091393.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., García-Nava H. , and Ocampo-Torres F. J. , 2011b: Dimensionally consistent similarity relation of ocean surface friction coefficient in mixed seas. J. Phys. Oceanogr., 41, 12271238.

    • Search Google Scholar
    • Export Citation
  • Isoguchi, O., and Shimada M. , 2009: An L-band ocean geophysical model function derived from PALSAR. IEEE Trans. Geosci. Remote Sens., 47, 19251936.

    • Search Google Scholar
    • Export Citation
  • Jackson, F. C., Walton W. T. , Hines D. E. , Walter B. A. , and Peng C. Y. , 1992: Sea surface mean-square slope from Ku-band backscatter data. J. Geophys. Res., 97 (C7), 11 41111 427.

    • Search Google Scholar
    • Export Citation
  • Jähne, B., and Riemer K. S. , 1990: Two-dimensional wave number spectra of small-scale water surface waves. J. Geophys. Res., 95 (C7), 11 53111 546.

    • Search Google Scholar
    • Export Citation
  • Janssen, J. A. M., 1997: Does wind stress depend on sea-state or not?—A statistical error analysis of HEXMAX data. Bound.-Layer Meteor., 83, 479503.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1987: The initial evolution of gravity-capillary waves. J. Fluid Mech., 184, 581597, doi:10.1017/S0022112087003033.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., Mitchell D. A. , Wang D. W. , and Teague W. J. , 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709.

    • Search Google Scholar
    • Export Citation
  • Jonathan, P., Flynn J. , and Evans K. , 2010: Joint modelling of wave spectral parameters for extreme sea states. Ocean Eng., 37, 10701080.

    • Search Google Scholar
    • Export Citation
  • Jones, W. L., and Schroeder L. C. , 1978: Radar backscatter from the ocean: Dependence on surface friction velocity. Bound.-Layer Meteor., 13, 133149.

    • Search Google Scholar
    • Export Citation
  • Keller, W. C., and Wright J. W. , 1975: Microwave scattering and the straining of wind-generated waves. Radio Sci., 10, 139147.

  • Klinke, J., and Jähne B. , 1995: Measurements of short wind waves during the MBLARI west coast experiment. Air-Water Gas Transfer, B. Jähne and E. C Monahan, Eds., AEON Verlag and Studio, 165–173.

  • Kudryavtsev, V., Makin V. , and Chapron B. , 1999: Coupled sea surface atmosphere model: 2. Spectrum of short wind waves. J. Geophys. Res., 104 (C4), 76257639.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and Pond S. , 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464482.

  • Longuet-Higgins, M. S., 1963: The generation of capillary waves by steep gravity waves. J. Fluid Mech., 16, 138159.

  • Longuet-Higgins, M. S., 1992: Capillary rollers and bores. J. Fluid Mech., 240, 659679.

  • Longuet-Higgins, M. S., and Turner J. S. , 1974: An ‘entraining plume' model of a spilling breaker. J. Fluid Mech., 63, 120.

  • McGoldrick, L. F., 1965: Resonant interactions among capillary-gravity waves. J. Fluid Mech., 21, 305332.

  • McGoldrick, L. F., 1970: An experiment on second-order capillary gravity resonant wave interactions. J. Fluid Mech., 40, 251271.

  • Meissner, T., and Wentz F. J. , 2009: Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 47, 30653083.

    • Search Google Scholar
    • Export Citation
  • Merzi, N., and Graf W. H. , 1985: Evaluation of the drag coefficient considering the effects of mobility of the roughness elements. Ann. Geophys., 3, 473478.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1957: On the generation of surface waves by shear flow. J. Fluid Mech., 3, 185204.

  • Munk, W., 2009: An inconvenient sea truth: Spread, steepness, and skewness of surface slopes. Annu. Rev. Mar. Sci., 1, 377415.

  • Okuda, K., Kawai S. , and Toba Y. , 1977: Measurement of skin friction distribution along the surface of wind waves. J. Oceanogr. Soc. Japan, 33, 190198.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4, 426434.

  • Phillips, O. M., 1984: On the response of short ocean wave components at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr., 14, 14251433.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and Moskowitz L. , 1964: A proposed spectral form for full, developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69 (24), 51815190.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and Stacy R. A. , 1973: The elevation, slope and curvature spectra of a wind roughened sea surface. NASA Contract Rep. CR-2247, 126 pp.

  • Plant, W. J., 1977: Studies of backscattered sea return with a CW dual-frequency, X-band radar. IEEE J. Oceanic Eng., 2, 2836.

  • Plant, W. J., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87 (C3), 19611967.

  • Plant, W. J., 1990: Bragg scattering of electromagnetic waves from the air/sea interface. Remote Sensing, G. L. Geernaert and W. J. Plant, Eds., Vol. 2, Surface Waves and Fluxes, Kluwer Academic Publishers, 41–108.

  • Plant, W. J., 2002: A stochastic, multiscale model of microwave backscatter from the ocean. J. Geophys. Res., 107, C93120, doi:10.1029/2001JC000909.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., and Wright J. W. , 1977: Growth and equilibrium of short gravity waves in a wind-wave tank. J. Fluid Mech., 82, 767793.

  • Plant, W. J., and Wright J. W. , 1979: Spectral decomposition of short gravity wave systems. J. Phys. Oceanogr., 9, 621624.

  • Plant, W. J., and Wright J. W. , 1980: Phase speeds of upwind and downwind traveling short gravity waves. J. Geophys. Res., 85 (C6), 33043310.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Vickery P. J. , and Reinhold T. A. , 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and Wentz F. , 2011: Reprocessed QuikSCAT (V04) wind vectors with Ku-2011 geophysical model function. Remote Sensing Systems Tech. Rep. 043011, 8 pp.

  • Ricciardulli, L., Meissner T. , and Wentz F. , 2012: Towards a climate data record of satellite ocean vector winds. Proc. 2012 IEEE Int. Geoscience and Remote Sensing Symp., Munich, Germany, IEEE, 2067–2069.

  • Romeiser, R., Alpers W. , and Wismann V. , 1997: An improved composite surface model for the radar backscattering cross section of the ocean surface. 1. Theory of the model and optimization/validate by scatterometer data. J. Geophys. Res., 102 (C11), 25 23725 250.

    • Search Google Scholar
    • Export Citation
  • Ross, V., and Dion D. , 2007: Sea surface slope statistics derived from sun glitter radiance measurements and their apparent dependence on sensor elevation. J. Geophys. Res., 112, C09015, doi:10.1029/2007JC004137.

    • Search Google Scholar
    • Export Citation
  • Shemdin, O. H., and Hwang P. A. , 1988: Comparison of measured and predicted sea surface spectrum of short waves. J. Geophys. Res., 93 (C11), 13 88313 890.

    • Search Google Scholar
    • Export Citation
  • Shemdin, O. H., Tran H. M. , and Wu S. C. , 1988: Directional measurement of short ocean waves with stereophotography. J. Geophys. Res., 93, 13 89113 901.

    • Search Google Scholar
    • Export Citation
  • Simmons, W. F., 1967: A variational method for weak resonant wave interactions. Proc. Roy. Soc. London, 309A, 551579.

  • Stiassnie, M., 1996: On the equilibrium spectrum of gravity-capillary waves. J. Phys. Oceanogr., 26, 10931098.

  • Tang, S., and Shemdin O. H. , 1983: Measurement of high frequency waves using a wave follower. J. Geophys. Res., 88 (C14), 98329840.

  • Terray, E. A., Donelan M. A. , Agrawal Y. C. , Drennan W. M. , Kahma K. K. , Williams A. J. , Hwang P. A. , and Kitaigorodskii S. A. , 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807.

    • Search Google Scholar
    • Export Citation
  • Trokhimovski, Y. G., and Irisov V. G. , 2000: The analysis of wind exponents retrieved from microwave radar and radiometric measurements. IEEE Trans. Geosci. Remote Sens., 38, 470479.

    • Search Google Scholar
    • Export Citation
  • Valenzuela, G. R., 1978: Theories for the interaction of electromagnetic and oceanic waves—A review. Bound.-Layer Meteor., 13, 6185.

    • Search Google Scholar
    • Export Citation
  • Valenzuela, G. R., and Laing L. B. , 1972: Nonlinear energy transfer in gravity-capillary wave spectra with applications. J. Fluid Mech., 54, 507520.

    • Search Google Scholar
    • Export Citation
  • Vandemark, D., Chapron B. , Sun J. , Crescenti G. H. , and Graber H. C. , 2004: Ocean wave slope observations using radar backscatter and laser altimeters. J. Phys. Oceanogr., 34, 28252842.

    • Search Google Scholar
    • Export Citation
  • van Gastel, K., 1987: Nonlinear interactions of gravity-capillary waves: Lagrangian theory and effects on the spectrum. J. Fluid Mech., 182, 499523, doi:10.1017/S002211208700243X.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., Wadhera D. , Powell M. D. , and Chen Y. , 2009: A hurricane boundary layer and wind field model for use in engineering application. J. Appl. Meteor. Climatol., 48, 381405.

    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., Vandemark D. C. , Friehe C. A. , Burns S. P. , Khelif D. , Swift R. N. , and Scott J. F. , 1998: Measuring sea surface mean square slope with a 36-GHz scanning radar altimeter. J. Geophys. Res., 103 (C6), 12 58712 601.

    • Search Google Scholar
    • Export Citation
  • WAMDI group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 17751810.

  • Wang, D. W., and Hwang P. A. , 2004: On the dispersion relation of short gravity waves from space–time wave measurements. J. Atmos. Oceanic Technol., 21, 19361946.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1977: A two scale scattering model with application to the JONSWAP ‘75 aircraft microwave scatterometer experiment. NASA Contract Rep. 2919, 122 pp.

  • Wentz, F. J., and Smith D. K. , 1999: A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104 (C5), 11 49911 514.

    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488.

    • Search Google Scholar
    • Export Citation
  • Wright, J. W., 1966: Backscattering from capillary waves with application to sea clutter. IEEE Trans. Antennas Propag., 14, 749754.

  • Wright, J. W., 1968: A new model for sea clutter. IEEE Trans. Antennas Propag., 16, 217223.

  • Wright, J. W., 1978: Detection of ocean waves by microwave radars: The modulation of short gravity-capillary waves. Bound.-Layer Meteor., 13, 87105.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr., 10, 727740.

  • Yueh, S. H., Dinardo S. J. , Fore A. G. , and Li F. K. , 2010: Passive and active L-band microwave observations and modeling of ocean surface winds. IEEE Trans. Geosci. Remote Sens., 48, 30873100.

    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., Banner M. L. , Schultz H. , Corrada-Emmanuel A. , Wolff L. B. , and Yalcin J. , 2008: Retrieval of short ocean wave slope using polarimetric imaging. Meas. Sci. Technol., 19, 055503, doi:10.1088/0957-0233/19/055503.

    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., Banner M. L. , Schultz H. , Gemmrich J. R. , Morrison R. P. , LaBel D. A. , and Dickey T. , 2012: An overview of sea state conditions and air-sea fluxes during RaDyO. J. Geophys. Res., 117, C00H19, doi:10.1029/2011JC007336.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., 1995: Capillary-gravity and capillary waves generated in a wind wave tank: Observations and theories. J. Fluid Mech., 289, 5182.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., 2003: Surface image velocimetry for measuring short wind wave kinematics. Exp. Fluids, 35, 653665.

  • Zhang, X., 2005: Short surface waves on surface shear. J. Fluid Mech., 541, 345370.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 27
PDF Downloads 11 11 11

Ocean Surface Roughness Spectrum in High Wind Condition for Microwave Backscatter and Emission Computations

View More View Less
  • 1 Remote Sensing Division, Naval Research Laboratory, Washington, D.C.
  • | 2 Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi
Restricted access

Abstract

Ocean surface roughness plays an important role in air–sea interaction and ocean remote sensing. Its primary contribution is from surface waves much shorter than the energetic wave components near the peak of the wave energy spectrum. Field measurements of short-scale waves are scarce. In contrast, microwave remote sensing has produced a large volume of data useful for short-wave investigation. Particularly, Bragg resonance is the primary mechanism of radar backscatter from the ocean surface and the radar serves as a spectrometer of short surface waves. The roughness spectra inverted from radar backscatter measurements expand the short-wave database to high wind conditions in which in situ sensors do not function well. Using scatterometer geophysical model functions for L-, C-, and Ku-band microwave frequencies, the inverted roughness spectra, covering Bragg resonance wavelengths from 0.012 to 0.20 m, show a convergent trend in high winds. This convergent trend is incorporated in the surface roughness spectrum model to improve the applicable wind speed range for microwave scattering and emission computations.

U.S. Naval Research Laboratory Contribution Number JA/7260-12-0254.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil

Abstract

Ocean surface roughness plays an important role in air–sea interaction and ocean remote sensing. Its primary contribution is from surface waves much shorter than the energetic wave components near the peak of the wave energy spectrum. Field measurements of short-scale waves are scarce. In contrast, microwave remote sensing has produced a large volume of data useful for short-wave investigation. Particularly, Bragg resonance is the primary mechanism of radar backscatter from the ocean surface and the radar serves as a spectrometer of short surface waves. The roughness spectra inverted from radar backscatter measurements expand the short-wave database to high wind conditions in which in situ sensors do not function well. Using scatterometer geophysical model functions for L-, C-, and Ku-band microwave frequencies, the inverted roughness spectra, covering Bragg resonance wavelengths from 0.012 to 0.20 m, show a convergent trend in high winds. This convergent trend is incorporated in the surface roughness spectrum model to improve the applicable wind speed range for microwave scattering and emission computations.

U.S. Naval Research Laboratory Contribution Number JA/7260-12-0254.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil
Save