• Barthlott, C., Kalthoff N. , and Fiedler F. , 2003: Influence of high-frequency radiation on turbulence measurements on a 200 m tower. Meteor. Z., 12, 6771.

    • Search Google Scholar
    • Export Citation
  • Bronstein, I., Semendjajew K. , Musiol G. , and Mühlig H. , 2001: Taschenbuch der Mathematik. 5th ed. Verlag Harri Deutsch, 1196 pp.

  • Browning, K., and Wexler R. , 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113.

    • Search Google Scholar
    • Export Citation
  • Browning, K., and Coauthors, 2007: The convective storm initiation project. Bull. Amer. Meteor. Soc., 88, 19391955.

  • Calhoun, R., Heap R. , Princevac M. , Newsom R. , Fernando H. , and Ligon D. , 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J. Appl. Meteor. Climatol., 45, 11161126.

    • Search Google Scholar
    • Export Citation
  • Collier, C., and Coauthors, 2005: Dual-Doppler lidar measurements for improving dispersion models. Bull. Amer. Meteor. Soc., 86, 825838.

    • Search Google Scholar
    • Export Citation
  • Davies, F., Collier C. , and Bozier K. , 2005: Errors associated with dual-Doppler-lidar turbulence measurements. J. Opt., 7A, 280289.

  • Davies-Jones, R. P., 1979: Dual-Doppler radar coverage area as a function of measurement accuracy and spatial resolution. J. Appl. Meteor., 18, 12291233.

    • Search Google Scholar
    • Export Citation
  • Drechsel, S., Chong M. , Mayr G. , Weissmann M. , Calhoun R. , and Dörnbrack A. , 2009: Three-dimensional wind retrieval: Application of MUSCAT to dual-Doppler lidar. J. Atmos. Oceanic Technol., 26, 635646.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 1997: Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Oceanic Technol., 14, 5475.

  • Frehlich, R., 2001: Estimation of velocity error for Doppler lidar measurements. J. Atmos. Oceanic Technol., 18, 16281639.

  • Frehlich, R., Hannon S. M. , and Henderson S. , 1994: Performance of a 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol., 11, 15171528.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Hannon S. M. , and Henderson S. , 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor., 86, 233256.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Meillier Y. , Jensen M. , Balsley B. , and Sharman R. , 2006: Measurements of boundary layer profiles in an urban environment. J. Appl. Meteor. Climatol., 45, 821837.

    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P., and Coauthors, 2009: Observations of kinematics and thermodynamic structure surrounding a convective storm cluster over a low mountain range. Mon. Wea. Rev., 137, 585602.

    • Search Google Scholar
    • Export Citation
  • Hill, M., Calhoun R. , Fernando H. J. S. , Wieser A. , Dörnbrack A. , Weissmann M. , Mayr G. , and Newsom R. , 2010: Coplanar Doppler lidar retrieval of rotors from T-REX. J. Atmos. Sci., 67, 713729.

    • Search Google Scholar
    • Export Citation
  • Iwai, H., and Coauthors, 2008: Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks. Geophys. Res. Lett., 35, L14808, doi:10.1029/2008GL034571.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and Finnigan J. J. , 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor. Z., 17, 931948.

  • Kristensen, L., Kirkegaard P. , Mann J. , Mikkelsen T. , Nielsen M. , and Sjöholm M. , 2010: Spectral coherence along a lidar-anemometer beam. Risø National Laboratory for Sustainable Energy Rep. Risø-R-1744(EN), 20 pp.

  • Lenschow, D., Wulfmeyer V. , and Senff C. , 2000: Measuring second- through fourth-order moments in noisy data. J. Atmos. Oceanic Technol., 17, 13301347.

    • Search Google Scholar
    • Export Citation
  • Leosphere, 2013: Weather and climate lidar products. [Available online at http://www.leosphere.com/file/meteo_brochure.pdf.]

  • Lothon, M., Lenschow D. , and Mayor S. , 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121, 521536.

    • Search Google Scholar
    • Export Citation
  • Lottman, B., Frehlich R. , Hannon S. , and Henderson S. , 2001: Evaluation of vertical winds near and inside a cloud deck using coherent Doppler lidar. J. Atmos. Oceanic Technol., 18, 13771386.

    • Search Google Scholar
    • Export Citation
  • Mann, J., and Coauthors, 2009: Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteor. Z., 18, 135140.

    • Search Google Scholar
    • Export Citation
  • Mann, J., Pena A. , Bingol F. , Wagner R. , and Courtney M. S. , 2010: Lidar scanning of momentum flux in and above the atmospheric surface layer. J. Atmos. Oceanic Technol., 27, 959976.

    • Search Google Scholar
    • Export Citation
  • Newsom, R., Ligon D. , Calhoun R. , Heap R. , Cregan E. , and Princevac M. , 2005: Retrieval of microscale wind and temperature fields from single- and dual-Doppler lidar data. J. Appl. Meteor., 44, 13241345.

    • Search Google Scholar
    • Export Citation
  • Newsom, R., Calhoun R. , Ligon D. , and Allwine J. , 2008: Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Bound.-Layer Meteor., 127, 111130.

    • Search Google Scholar
    • Export Citation
  • Pearson, G., Davies F. , and Collier C. , 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y., Banta R. M. , and Brewer A. W. , 2006: Vertical profiles of velocity variances and TKE using Doppler-lidar scan data. Preprints, 17th Symp. on Boundary Layers and Turbulence, San Diego, CA, Amer. Meteor. Soc., 7.1. [Available online at https://ams.confex.com/ams/BLTAgFBioA/techprogram/paper_111195.htm.]

  • Raasch, S., and Schroter M. , 2001: PALM—A large-eddy simulation model performing on massively parallel computers. Meteor. Z., 10, 363372.

    • Search Google Scholar
    • Export Citation
  • Rothermel, J., Kessinger C. , and Davis D. , 1985: Dual-Doppler lidar measurement of winds in the JAWS experiment. J. Atmos. Oceanic Technol., 2, 138147.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tang, W., Chan P. W. , and Haller G. , 2011a: Lagrangian coherent structure analysis of terminal winds detected by lidar. Part I: Turbulence structures. J. Appl. Meteor. Climatol. 50, 325–338.

    • Search Google Scholar
    • Export Citation
  • Tang, W., Chan P. W. , and Haller G. , 2011b: Lagrangian coherent structure analysis of terminal winds detected by lidar. Part II: Structure evolution and comparison with flight data. J. Appl. Meteor. Climatol., 50, 2167–2183.

    • Search Google Scholar
    • Export Citation
  • Träumner, K., Kottmeier C. , Corsmeier U. , and Wieser A. , 2011: Convective boundary-layer entrainment: Short review and progress using Doppler lidar. Bound.-Layer Meteor., 141, 369391.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 22
PDF Downloads 17 17 17

Scopes and Challenges of Dual-Doppler Lidar Wind Measurements—An Error Analysis

View More View Less
  • 1 Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • | 2 Institute of Meteorology and Climatology, University of Hannover, Hannover, Germany
  • | 3 Arizona State University, Tempe, Arizona
Restricted access

Abstract

Pulsed Doppler lidars are powerful tools for long-range, high-resolution measurements of radial wind velocities. With the development of commercial Doppler lidars and the reduction of acquisition costs, dual-Doppler lidar systems will be become increasingly accessible in upcoming years. This study reviews the most common dual-Doppler techniques, describes the setup of a highly synchronized long-range dual-Doppler lidar system, and discusses extensively the different kinds of errors connected with this complex measurement technique. Sources of errors and their interactions are traced through the retrieval algorithm, including errors from single-Doppler lidar and those occurring from a combination of instruments related to various parameters, such as relative beam angles, time and spatial scales of the scan pattern, and atmospheric conditions.

Corresponding author address: Katja Träumner, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany. E-mail: katja.traeumner@kit.edu

Abstract

Pulsed Doppler lidars are powerful tools for long-range, high-resolution measurements of radial wind velocities. With the development of commercial Doppler lidars and the reduction of acquisition costs, dual-Doppler lidar systems will be become increasingly accessible in upcoming years. This study reviews the most common dual-Doppler techniques, describes the setup of a highly synchronized long-range dual-Doppler lidar system, and discusses extensively the different kinds of errors connected with this complex measurement technique. Sources of errors and their interactions are traced through the retrieval algorithm, including errors from single-Doppler lidar and those occurring from a combination of instruments related to various parameters, such as relative beam angles, time and spatial scales of the scan pattern, and atmospheric conditions.

Corresponding author address: Katja Träumner, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany. E-mail: katja.traeumner@kit.edu
Save