Lidar-Observed Stress Vectors and Veer in the Atmospheric Boundary Layer

Jacob Berg Technical University of Denmark, Risø Campus, Roskilde, Denmark

Search for other papers by Jacob Berg in
Current site
Google Scholar
PubMed
Close
,
Jakob Mann Technical University of Denmark, Risø Campus, Roskilde, Denmark

Search for other papers by Jakob Mann in
Current site
Google Scholar
PubMed
Close
, and
Edward G. Patton National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Edward G. Patton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study demonstrates that a pulsed wind lidar is a reliable instrument for measuring angles between horizontal vectors of significance in the atmospheric boundary layer. Three different angles are considered: the wind turning, the angle between the stress vector and the mean wind direction, and the angle between the stress vector and the vertical gradient of the mean velocity vector. The latter is assumed to be zero by the often applied turbulent-viscosity hypothesis, so that the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force is negligible, this is supposedly a good approximation. High-resolution large-eddy simulation data show that this is indeed the case even beyond the surface layer. In contrast, through analysis of WindCube lidar measurements supported by sonic measurements, the study shows that it is only valid very close to the surface. The deviation may be significant even at 100 m. This behavior is attributed to mesoscale effects.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jacob Berg, Department of Wind Energy, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark. E-mail: jbej@dtu.dk

This article is included in the ISARS 2012 special collection.

Abstract

This study demonstrates that a pulsed wind lidar is a reliable instrument for measuring angles between horizontal vectors of significance in the atmospheric boundary layer. Three different angles are considered: the wind turning, the angle between the stress vector and the mean wind direction, and the angle between the stress vector and the vertical gradient of the mean velocity vector. The latter is assumed to be zero by the often applied turbulent-viscosity hypothesis, so that the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force is negligible, this is supposedly a good approximation. High-resolution large-eddy simulation data show that this is indeed the case even beyond the surface layer. In contrast, through analysis of WindCube lidar measurements supported by sonic measurements, the study shows that it is only valid very close to the surface. The deviation may be significant even at 100 m. This behavior is attributed to mesoscale effects.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jacob Berg, Department of Wind Energy, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark. E-mail: jbej@dtu.dk

This article is included in the ISARS 2012 special collection.

Save
  • Barnardes, M., and Dias N. L. , 2010: The alignment of the mean wind vector and stress vectors in the unstable surface layer. Bound.-Layer Meteor., 134, 4159.

    • Search Google Scholar
    • Export Citation
  • Berg, J., Mann J. , Bechmann A. , Courtney M. S. , and Jørgensen H. E. , 2011: The Bolund Experiment, part I: Flow over a steep, three-dimensional hill. Bound.-Layer Meteor., 141, 219–243.

    • Search Google Scholar
    • Export Citation
  • Bradley, S., 2013: Aspects of the correlation between sodar and mast instrument winds. J. Atmos. Oceanic Technol., in press.

  • Chougule, A., Mann J. , Kelly M. , Sun J. , Lenschow D. H. , and Patton E. G. , 2012: Vertical cross-spectral phases in neutral atmospheric flow. J. Turbul., 13, doi:10.1080/14685248.2012.711524.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., and Hess G. D. , 1974: Geostrophic departure and the functions A and B of Rossby-number similarity theory. Bound.-Layer Meteor., 7, 267287.

    • Search Google Scholar
    • Export Citation
  • Eberhard, W. L., Cupp R. E. , and Healy K. R. , 1989: Doppler lidar measurement of profiles of turbulence and momentum flux. J. Atmos. Oceanic Technol., 6, 809819.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., Harris M. , and Banta R. M. , 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteor. Z., 16, 337347, doi:10.1127/0941-2948/2007/0225.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and Cornman L. , 2002: Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Oceanic Technol., 19, 355366.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., Xu M. , and Eberhard W. L. , 1992: Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data. J. Geophys. Res., 97 (D17), 18 40918 423.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., Fairall C. W. , Hare J. E. , Edson J. B. , and Miller S. D. , 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., Lenschow D. H. , and Mayor S. D. , 2009: Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Bound.-Layer Meteor., 132, 205226.

    • Search Google Scholar
    • Export Citation
  • Mann, J., 1994: The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech., 273, 141168.

  • Mann, J., and Coauthors, 2009: Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteor. Z., 18, 135140.

    • Search Google Scholar
    • Export Citation
  • Mann, J., Peña A. , Bingöl F. , Wagner R. , and Courtney M. S. , 2010: Lidar scanning of momentum flux in and above the atmospheric surface layer. J. Atmos. Oceanic Technol., 27, 959976.

    • Search Google Scholar
    • Export Citation
  • Mayor, S. D., Lenschow D. H. , Schwiesow R. L. , Mann J. , Frush C. L. , and Simon M. K. , 1997: Validation of NCAR 10.6-μm CO2 Doppler lidar radial velocity measurements and comparison with a 915-MHz profiler. J. Atmos. Oceanic Technol., 14, 11101126.

    • Search Google Scholar
    • Export Citation
  • Peña, A., Hasager C. B. , Gryning S.-E. , Courtney M. , Antoniou I. , and Mikkelsen T. , 2009: Offshore wind profiling using light detection and ranging measurements. Wind Energy, 12, 105124.

    • Search Google Scholar
    • Export Citation
  • Peña, A., Gryning S.-E. , Mann J. , and Hasager C. B. , 2010: Length scales of the neutral wind profile over homogeneous terrain. J. Appl. Meteor. Climatol., 49, 792806.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., Banta R. M. , Kelley N. D. , Jonkman B. J. , Tucker S. C. , Newsom R. K. , and Brewer W. A. , 2008: Horizontal-velocity and variance measurements in the stable boundary layer using Doppler lidar: Sensitivity to averaging procedures. J. Atmos. Oceanic Technol., 25, 13071327.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 770 pp.

  • Sathe, A., and Mann J. , 2012: Measurement of turbulence spectra using scanning pulsed wind lidars. J. Geophys. Res., 117, D01201, doi:10.1029/2011JD016786.

    • Search Google Scholar
    • Export Citation
  • Sathe, A., Mann J. , Gottschall J. , and Courtney M. S. , 2011: Can wind lidars measure turbulence? J. Atmos. Oceanic Technol., 28, 853868.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and Patton E. G. , 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415.

    • Search Google Scholar
    • Export Citation
  • Weber, R. O., 1997: Estimators for the standard deviation of horizontal wind direction. J. Appl. Meteor., 36, 14031415.

  • Weber, R. O., 1999: Remarks on the definition and estimation of friction velocity. Bound.-Layer Meteor., 93, 197209.

  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Yamartino, R. J., 1984: A comparison of several “single-pass” estimators of the standard deviation of wind direction. J. Appl. Meteor. Climatol., 23, 1362–1366.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1001 424 5
PDF Downloads 275 86 5