Ground Clutter Mitigation for Weather Radars Using the Autocorrelation Spectral Density

Sebastián M. Torres Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR /National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Sebastián M. Torres in
Current site
Google Scholar
PubMed
Close
and
David A. Warde Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR /National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David A. Warde in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radar returns from the ground, known as ground clutter, can contaminate weather signals, often resulting in severely biased meteorological estimates. If not removed, these contaminants may artificially inflate quantitative precipitation estimates and obscure polarimetric and Doppler signatures of weather. A ground-clutter filter is typically employed to mitigate this contamination and provide less biased meteorological-variable estimates. This paper introduces a novel adaptive filter based on the autocorrelation spectral density, which is capable of mitigating the adverse effects of ground clutter without unnecessarily degrading the quality of the meteorological data. The so-called Clutter Environment Analysis using Adaptive Processing (CLEAN-AP) filter adjusts its suppression characteristics in real time to match dynamic atmospheric environments and meets Next Generation Weather Radar (NEXRAD) clutter-suppression requirements.

Corresponding author address: Sebastián Torres, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: sebastian.torres@noaa.gov

Abstract

Radar returns from the ground, known as ground clutter, can contaminate weather signals, often resulting in severely biased meteorological estimates. If not removed, these contaminants may artificially inflate quantitative precipitation estimates and obscure polarimetric and Doppler signatures of weather. A ground-clutter filter is typically employed to mitigate this contamination and provide less biased meteorological-variable estimates. This paper introduces a novel adaptive filter based on the autocorrelation spectral density, which is capable of mitigating the adverse effects of ground clutter without unnecessarily degrading the quality of the meteorological data. The so-called Clutter Environment Analysis using Adaptive Processing (CLEAN-AP) filter adjusts its suppression characteristics in real time to match dynamic atmospheric environments and meets Next Generation Weather Radar (NEXRAD) clutter-suppression requirements.

Corresponding author address: Sebastián Torres, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: sebastian.torres@noaa.gov
Save
  • Adams, J. W., 1991: A new optimal window [signal processing]. IEEE Trans. Signal Process., 39, 17531769, doi:10.1109/78.91146.

  • Bachmann, S., Zrnić D. , and Curtis C. , 2008: Spectral identification and suppression of ground clutter contributions for phased array radar. 24th Conf. on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, New Orleans, LA, Amer. Meteor. Soc., P9A.4. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_131493.htm.]

  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Chrisman, J., Rinderknecht D. , and Hamilton R. , 1994: WSR-88D clutter suppression and its impact on meteorological data interpretation. Preprints, First WSR-88D User’s Conf., Norman, OK, WSR-88D Operational Support Facility, 9–20.

  • Crum, T. D., Saffle R. E. , and Wilson J. W. , 1998: An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting, 13, 253262, doi:10.1175/1520-0434(1998)013<0253:AUOTNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doviak, R., and Zrnić D. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Fabry, F., and Gadoury J. , 2009: Another method for ground target identification and filtering using spectral processing of dual-polarization returns. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P5.19. [Available online at https://ams.confex.com/ams/34Radar/techprogram/paper_156127.htm.]

  • Fornasiero, A., Alberoni P. P. , Amorati R. , Ferraris L. , and Taramasso A. C. , 2005: Effects of propagation conditions on radar beam-ground interaction: Impact on data quality. Adv. Geosci., 2, 201208, doi:10.5194/adgeo-2-201-2005.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Germann U. , and Tabary P. , 2009: Influence of ground clutter contamination on polarimetric radar parameters. J. Atmos. Oceanic Technol., 26, 251269, doi:10.1175/2008JTECHA1092.1.

    • Search Google Scholar
    • Export Citation
  • Hamidi, S., and Zrnić D. S. , 1981: Considerations for the design of ground clutter cancelers for weather radars. Preprints, 20th Conf. on Radar Meteorology, Boston, MA, Amer. Meteor. Soc., 319326.

  • Harris, F. J., 1978: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 66, 5183, doi:10.1109/PROC.1978.10837.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., Dixon M. , and Ellis S. M. , 2009: Weather radar ground clutter. Part II: Real-time identification and filtering. J. Atmos. Oceanic Technol., 26, 11811197, doi:10.1175/2009JTECHA1160.1.

    • Search Google Scholar
    • Export Citation
  • Ice, R., Warde D. , Sirmans D. , and Rachel D. , 2004: Report on Open RDA: RVP-8 signal processing. Part I: Simulation study. WSR-88D Radar Operations Center Rep., 87 pp.

  • Ice, R., and Coauthors, 2009: Automatic clutter mitigation in the WSR-88D, design, evaluation, and implementation. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P5.3. [Available online at https://ams.confex.com/ams/34Radar/techprogram/paper_155409.htm.]

  • Kilambi, A., Fabry F. , and Torres S. M. , 2013: Improving polarimetric radar parameter estimates and target identification: A comparison of different approaches. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 328. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper229001.html.]

  • Lei, L., Zhang G. , Doviak R. J. , Palmer R. , Cheong B. L. , Xue M. , Cao Q. , and Li Y. , 2012: Multilag correlation estimators for polarimetric radar measurements in the presence of noise. J. Atmos. Oceanic Technol., 29, 772795, doi:10.1175/JTECH-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
  • Meymaris, G., Williams J. K. , and Hubbert J. C. , 2009: Performance of a proposed hybrid spectrum width estimator for the NEXRAD ORDA. 25th Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 11B.1. [Available online at https://ams.confex.com/ams/89annual/techprogram/paper_145958.htm.]

  • Moisseev, D. N., and Chandrasekar V. , 2009: Polarimetric spectral filter for adaptive clutter and noise suppression. J. Atmos. Oceanic Technol., 26, 215228, doi:10.1175/2008JTECHA1119.1.

    • Search Google Scholar
    • Export Citation
  • NEXRAD Radar Operations Center, 1996: WSR-88D system specification. Specification 2810000A, NEXRAD Operational Support Facility, 274 pp. [Available online at http://www.roc.noaa.gov/wsr88d/PublicDocs/NTR96.pdf.]

  • Nuttall, A. H., 1981: Some windows with very good sidelobe behavior. IEEE Trans. Acoust. Speech Signal Process., 29, 8491, doi:10.1109/TASSP.1981.1163506.

    • Search Google Scholar
    • Export Citation
  • Pamment, J. A., and Conway B. J. , 1998: Objective identification of echoes due to anomalous propagation in weather radar data. J. Atmos. Oceanic Technol., 15, 98113, doi:10.1175/1520-0426(1998)015<0098:OIOEDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, H., Ryzhkov A. V. , Zrnić D. S. , and Kim K. E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., Jr., Romanik P. , Geotis S. G. , and Siggia A. D. , 1981: Ground clutter rejection in the frequency domain. Preprints, 20th Conf. on Radar Meteorology, Boston, MA, Amer. Meteor. Soc., 295300.

  • Siggia, A., and Passarelli J. R. , 2004: Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation. Proc. Third European Conf. on Radar in Meteorology and Hydrology, Visby, Gotland, Sweden, ERAD, 6773.

  • Sirmans, D., 1987: NEXRAD suppression of land clutter echo due to anomalous microwave propagation—Part 1. NSSL Rep. to NEXRAD JSPO, 73 pp.

  • Sirmans, D., 1992: Clutter filtering in the WSR-88D. OSF Tech. Rep., 125 pp.

  • Sirmans, D., and Dooley J. , 1980: Ground clutter statistics of a 10 cm ground based radar. Preprints, 19th Conf. on Radar Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 184191.

  • Torres, S. M., and Zrnić D. S. , 1999: Ground clutter canceling with a regression filter. J. Atmos. Oceanic Technol., 16, 13641372, doi:10.1175/1520-0426(1999)016<1364:GCCWAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torres, S. M., Curtis C. D. , Zrnić D. S. , and Jain M. , 2007: Analysis of the new NEXRAD spectrum width estimator. 33rd Int. Conf. on Radar Meteorology, Cairns, QLD, Australia, Amer. Meteor. Soc., P7.8. [Available online at https://ams.confex.com/ams/33Radar/techprogram/paper_123048.htm.]

  • Torres, S. M., Warde D. , Gallardo B. , Le K. , and Zrnić D. , 2010: Signal design and processing techniques for WSR-88D ambiguity resolution: Staggered PRT algorithm updates, the CLEAN-AP filter, and the hybrid spectrum width estimator. Part 14, NSSL Rep., 145 pp. [Available online at http://cimms.ou.edu/~torres/Documents/NSSL Ambiguity Report - Part 14.pdf.]

  • Torres, S. M., Warde D. , and Zrnić D. , 2012: Signal design and processing techniques for WSR-88D ambiguity resolution: The CLEAN-AP filter. Part 15, NSSL Rep., 65 pp. [Available online at http://cimms.ou.edu/~torres/Documents/NSSL Ambiguity Report - Part 15.pdf.]

  • Warde, D., and Torres S. , 2013: Automated real-time mitigation of ground clutter contamination for dual-polarization Doppler weather radars using the alternating transmission mode. 29th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 17. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper217703.html.]

  • Warde, D., and Torres S. , 2014: The autocorrelation spectral density for Doppler-weather-radar signal analysis. IEEE Trans. Geosci. Remote Sens., 52, 508518, doi:10.1109/TGRS.2013.2241775.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1975: Simulation of weatherlike Doppler spectra and signals. J. Appl. Meteor., 14, 619620, doi:10.1175/1520-0450(1975)014<0619:SOWDSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Melnikov V. M. , and Ivić I. , 2008: Processing to obtain polarimetric variables on the ORDA. NOAA/NSSL Rep., 55 pp. [Available online at http://www.nssl.noaa.gov/publications/wsr88d_reports/RPT_DoNotDestroy.doc.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1500 419 36
PDF Downloads 1348 348 28