Reduced-Rank Sigma-Point Kalman Filter and Its Application in ENSO Model

K. K. Manoj Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada

Search for other papers by K. K. Manoj in
Current site
Google Scholar
PubMed
Close
,
Youmin Tang Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada, and State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, China

Search for other papers by Youmin Tang in
Current site
Google Scholar
PubMed
Close
,
Ziwang Deng Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, and Department of Statistics, York University, Toronto, Ontario, Canada

Search for other papers by Ziwang Deng in
Current site
Google Scholar
PubMed
Close
,
Dake Chen State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, China

Search for other papers by Dake Chen in
Current site
Google Scholar
PubMed
Close
, and
Yanjie Cheng National Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Yanjie Cheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The huge computational expense has been a main challenge while applying the sigma-point unscented Kalman filter (SPUKF) to a high-dimensional system. This study focuses on this issue and presents two methods to construct a reduced-rank sigma-point unscented Kalman filter (RRSPUKF). Both techniques employ the truncated singular value decomposition (TSVD) to factorize the covariance matrix and reduce its rank through truncation. The reduced-rank square root matrix is used to select the most important sigma points that can retain the main statistical features of the original sigma points. In the first technique, TSVD is applied on the covariance matrix constructed in the data space [RRSPUKF(D)], whereas in the second technique TSVD is applied on the covariance matrix constructed in the ensemble space [RRSPUKF(E)]. The two methods are applied to a realistic El Niño–Southern Oscillation (ENSO) prediction model [Lamont-Doherty Earth Observatory model, version 5 (LDEO5)] to assimilate the sea surface temperature (SST) anomalies. The results show that both the methods are more computationally efficient than the full-rank SPUKF, in spite of losing some estimation accuracy. When the truncation reaches a trade-off between cost expense and estimation accuracy, both methods are able to analyze the phase and intensity of all major ENSO events from 1971 to 2001 with comparable estimation accuracy. Furthermore, the RRSPUKF is compared against ensemble square root filter (EnSRF), showing that the overall analysis skill of RRSPUKF and EnSRF are comparable to each other, but the former is more robust than the latter.

Corresponding author address: Dr. Youmin Tang, Environmental Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada. E-mail: ytang@unbc.ca

Abstract

The huge computational expense has been a main challenge while applying the sigma-point unscented Kalman filter (SPUKF) to a high-dimensional system. This study focuses on this issue and presents two methods to construct a reduced-rank sigma-point unscented Kalman filter (RRSPUKF). Both techniques employ the truncated singular value decomposition (TSVD) to factorize the covariance matrix and reduce its rank through truncation. The reduced-rank square root matrix is used to select the most important sigma points that can retain the main statistical features of the original sigma points. In the first technique, TSVD is applied on the covariance matrix constructed in the data space [RRSPUKF(D)], whereas in the second technique TSVD is applied on the covariance matrix constructed in the ensemble space [RRSPUKF(E)]. The two methods are applied to a realistic El Niño–Southern Oscillation (ENSO) prediction model [Lamont-Doherty Earth Observatory model, version 5 (LDEO5)] to assimilate the sea surface temperature (SST) anomalies. The results show that both the methods are more computationally efficient than the full-rank SPUKF, in spite of losing some estimation accuracy. When the truncation reaches a trade-off between cost expense and estimation accuracy, both methods are able to analyze the phase and intensity of all major ENSO events from 1971 to 2001 with comparable estimation accuracy. Furthermore, the RRSPUKF is compared against ensemble square root filter (EnSRF), showing that the overall analysis skill of RRSPUKF and EnSRF are comparable to each other, but the former is more robust than the latter.

Corresponding author address: Dr. Youmin Tang, Environmental Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada. E-mail: ytang@unbc.ca
Save
  • Ambadan, J. T., and Tang Y. , 2009: Sigma-point Kalman filter data assimilation methods for strongly nonlinear systems. J. Atmos. Sci., 66, 261285, doi:10.1175/2008JAS2681.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, doi:10.1175/MWR-D-11-00013.1.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., Van Leeuwen P. J. , and Evensen G. , 1998: Analysis scheme in the ensemble. Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1984: Modeling sea level during El Niño. J. Phys. Oceanogr., 14, 18641874, doi:10.1175/1520-0485(1984)014<1864:MSLDEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, J., Kim I. S. , Benstein D. S. , and Ridley A. J. , 2008: Reduced-rank unscented Kalman filtering using Cholesky-based decomposition. Int. J. Control, 81, 17791792, doi:10.1080/00207170801891724.

    • Search Google Scholar
    • Export Citation
  • Chen, D., Cane M. A. , Kaplan A. , Zebiak S. E. , and Huang D. , 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, doi:10.1038/nature02439.

    • Search Google Scholar
    • Export Citation
  • Curn, J., Marinescu D. , Lacey G. , and Cahill V. , 2012: Estimation with non-white Gaussian observation noise using a generalised ensemble Kalman filter. Proc. IEEE Int. Symp. on Robotic and Sensors Environments (ROSE), Magdeburg, Germany, IEEE, 85–90, doi:10.1109/ROSE.2012.6402618.

  • Deng, Z., and Tang Y. , 2009: Reconstructing the past wind stresses over the tropical Pacific Ocean from 1875 to 1947. J. Appl. Meteor. Climatol., 48, 11811198, doi:10.1175/2008JAMC2049.1.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1992: Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model. J. Geophys. Res., 97, 17 90517 924, doi:10.1029/92JC01972.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1997: Advanced data assimilation for strongly nonlinear dynamics. Mon. Wea. Rev., 125, 13421354, doi:10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. 2nd ed. Springer, 307 pp.

  • Fan, C., and You Z. , 2009: Highly efficient sigma points filter for spacecraft attitude and rate estimation. Math. Probl. Eng., 2009, 507370, doi:10.1155/2009/507370.

    • Search Google Scholar
    • Export Citation
  • Furrer, R., and Bengtsson T. , 2007: Estimation of high dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal., 98, 227255, doi:10.1016/j.jmva.2006.08.003.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., Courtier P. , and Moll P. , 1993: Assimilation of simulated wind lidar data with a Kalman filter. Mon. Wea. Rev., 121, 18031820, doi:10.1175/1520-0493(1993)121<1803:AOSWLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Whitaker J. S. , 2005: Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, 31323147, doi:10.1175/MWR3020.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Snyder C. , 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, X., and Li X. , 2008: An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sens. Environ., 112, 14341449, doi:10.1016/j.rse.2007.07.008.

    • Search Google Scholar
    • Export Citation
  • Horn, R., 1990: The Hadamard product. Matrix Theory and Applications, C. R. Johnson, Ed., Proceedings of Symposia in Applied Mathematics, Vol. 40, American Mathematical Society, 87–169.

  • Houtekamer, P. L., and Mitchell H. L. , 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and Mitchell H. L. , 2001: A sequential ensemble Kalman filter for data assimilation. Mon. Wea. Rev., 129, 123137, doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ito, K., and Xiong K. , 2000: Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control, 45, 910927, doi:10.1109/9.855552.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., Neelin J. D. , and Ghil M. , 1994: El Niño on the devil’s staircase—Annual subharmonic steps to chaos. Science, 264, 7072, doi:10.1126/science.264.5155.70.

    • Search Google Scholar
    • Export Citation
  • Julier, S. J., 2002: The scaled unscented transformation. Proceedings of the 2002 American Control Conference, Vol. 6, IEEE, 45554559, doi:10.1109/ACC.2002.1025369.

  • Julier, S. J., 2003: The spherical simplex unscented transformation. Proceedings of the 2003 American Control Conference, Vol. 3, IEEE, 2430–2434, doi:10.1109/ACC.2003.1243439.

  • Julier, S. J., and Uhlmann J. K. , 1997: A new extension of the Kalman filter to nonlinear systems. Signal Processing, Sensor Fusion, and Target Recognition VI, I. Kadar, Ed., International Society for Optical Engineering (SPIE Proceedings 3068), 182–193, doi:10.1117/12.280797.

  • Julier, S. J., and Uhlmann J. K. , 2002: Reduced sigma point filters for the propagation of means and covariances through nonlinear transformation. Proceedings of the 2002 American Control Conference, Vol. 2, IEEE, 887–892, doi:10.1109/ACC.2002.1023128.

  • Julier, S. J., and Uhlmann J. K. , 2004: Unscented filtering and nonlinear estimation. Proc. IEEE,92, 401–422, doi:10.1109/JPROC.2003.823141.

  • Julier, S. J., Uhlmann J. K. , and Durrant-Whyte F. , 1995: A new approach for filtering nonlinear systems. Proceedings of the 1995 American Control Conference, Vol. 3, IEEE, 1628–1632, doi:10.1109/ACC.1995.529783.

  • Kaplan, A., Cane M. A. , Kushnir Y. , Clement A. C. , Blumenthal M. B. , and Rajagopalan B. , 1998: Analysis of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., and Anderson J. L. , 2007: Experimental implementation of an ensemble adjustment filter for an intermediate ENSO model. J. Climate, 20, 4638–4658, doi:10.1175/JCLI4245.1.

    • Search Google Scholar
    • Export Citation
  • Kim, I. S., Chandrasekar J. , Palanthandalam-Madapusi H. J. , Ridley A. , and Bernstein D. S. , 2007: State estimation for large-scale systems based on reduced-order error-covariance propagation. Proc. American Control Conf., New York, NY, IEEE, 57005705, doi:10.1109/ACC.2007.4282477.

  • Kirtman, B. P., and Schopf P. S. , 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11, 28042822, doi:10.1175/1520-0442(1998)011<2804:DVIEPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, H., Kalnay E. , Miyoshi T. , and Danforth C. M. , 2009: Accounting for model errors in ensemble data assimilation. Mon. Wea. Rev., 137, 34073419, doi:10.1175/2009MWR2766.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., and Xiu D. , 2008: On numerical properties of the ensemble Kalman filter for data assimilation. Comput. Methods Appl. Mech. Eng., 197, 35743583, doi:10.1016/j.cma.2008.03.022.

    • Search Google Scholar
    • Export Citation
  • Liang, B., 2007: An ensemble Kalman filter module for automatic history matching. Ph.D. thesis, The University of Texas at Austin, 335 pp.

  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Luo, X., and Moroz I. M. , 2009: Ensemble Kalman filter with the unscented transform. Physica D, 238, 549562, doi:10.1016/j.physd.2008.12.003.

    • Search Google Scholar
    • Export Citation
  • Miller, R., Ghil M. , and Gauthiez F. , 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 10371056, doi:10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., Houtekamer P. L. , and Pellerin G. , 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 27912808, doi:10.1175/1520-0493(2002)130<2791:ESBAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nerger, L., 2003: Parallel filter algorithms for data assimilation in oceanography. Ph.D. thesis, University of Bremen, Polar and Marine Research Rep. 487, 174 pp.

  • Nørgaard, M., Poulsen N. K. , and Ravn O. , 2000a: Advances in derivative-free state estimation for nonlinear systems. Dept. of Mathematical Modeling, Technical University of Denmark Tech. Rep. IMM-REP-1998-15, 33 pp.

  • Nørgaard, M., Poulsen N. K. , and Ravn O. , 2000b: New developments in state estimation of nonlinear systems. Automatica, 36, 16271638, doi:10.1016/S0005-1098(00)00089-3.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and Sardeshmukh P. D. , 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, doi:10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robert, C., Blayo E. , and Verron J. , 2006: Comparison of reduced-order, sequential and variational data assimilation methods in the tropical Pacific Ocean. Ocean Dyn., 56, 624–633, doi:10.1007/s10236-006-0079-9.

    • Search Google Scholar
    • Export Citation
  • Stewart, G. W., 1998: Basic Decompositions. Matrix Algorithms, Vol. 1, SIAM, 184 pp.

  • Tang, Y., and Ambadan J. , 2009: Reply. J. Atmos. Sci., 66, 35013503, doi:10.1175/2009JAS3273.1.

  • Tang, Y., Ambadan J. , and Chen D. , 2014a: Nonlinear measurement function in the ensemble Kalman filter. Adv. Atmos. Sci., 31, 551558, doi:10.1007/s00376-013-3117-9.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., Deng Z. , Manoj K. K. , and Chen D. , 2014b: A practical scheme of the sigma-point Kalman filter for high-dimensional systems. J. Adv. Model. Earth Syst., 6, 2137, doi:10.1002/2013MS000255.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., Anderson J. L. , Bishop C. H. , Hamill T. M. , and Whitaker J. S. , 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van der Merwe, R., 2004: Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. Ph.D. thesis, Oregon Health and Science University, 377 pp.

  • Van der Merwe, R., and Wan E. A. , 2001: The square-root unscented Kalman filter for state and parameter estimation. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001 (ICASSP ‘01), Vol. 6, IEEE, 34613464.

  • Van der Merwe, R., Wan E. A. , and Julier S. I. , 2004: Sigma-point Kalman filters for nonlinear estimation and sensor fusion: Applications to integrated navigation. AIAA Guidance, Navigation and Control Conf., Providence, RI, American Institute of Aeronautics and Astronautics, 51205122.

  • Von Storch, H., and Hannoschöck G. , 1984: Comments on “Empirical orthogonal function- analysis of wind vectors over the tropical Pacific region.” Bull. Amer. Meteor. Soc., 65, 162.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and Hamill T. , 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Zebiak, S. E., and Cane M. A. , 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 343 81 12
PDF Downloads 210 56 0