A Comparison of Two Ground-Based Lightning Detection Networks against the Satellite-Based Lightning Imaging Sensor (LIS)

Kelsey B. Thompson Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Kelsey B. Thompson in
Current site
Google Scholar
PubMed
Close
,
Monte G. Bateman Universities Space Research Association, Huntsville, Alabama

Search for other papers by Monte G. Bateman in
Current site
Google Scholar
PubMed
Close
, and
Lawrence D. Carey Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Lawrence D. Carey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lightning stroke data from both the World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN) were compared to lightning group data from the Lightning Imaging Sensor (LIS) from 1 January 2010 through 30 June 2011. The region of study, from 39°S to 39°N latitude, chosen based on the orbit of LIS, and 164°E east to 17°W longitude, chosen to approximate the possible Geostationary Lightning Mapper (GLM) longitude, was considered in its entirety and then divided into geographical subregions. Over this 18-month time period, WWLLN had an 11.0% entire region, 13.2% North American, 6.2% South American, 16.4% Atlantic Ocean, and 18.9% Pacific Ocean coincidence percent (CP) value. The ENTLN CP values were 28.5%, 63.3%, 2.2%, 3.0%, and 2.5%, respectively. During the 18 months, WWLLN CP values remained rather consistent but low and often higher over ocean than land; ENTLN CP values showed large spatial and temporal variability. With both networks, North America had less variability during summer months than winter months and higher CP values during winter months than summer months. The highest ENTLN CP values were found in the southeastern United States, especially in a semicircle that extended from central Oklahoma, through Texas, along the northern Gulf of Mexico, across southern Florida, and along the U.S. East Coast. There was no significant change in CP values over time; the lowest monthly North American ENTLN CP value was found in June 2011 at 48.1%, the last month analyzed. These findings are consistent with most ENTLN sensors being located in the United States.

Corresponding author address: Kelsey Thompson, Department of Atmospheric Science, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: kelsey.thompson@nsstc.uah.edu

Abstract

Lightning stroke data from both the World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN) were compared to lightning group data from the Lightning Imaging Sensor (LIS) from 1 January 2010 through 30 June 2011. The region of study, from 39°S to 39°N latitude, chosen based on the orbit of LIS, and 164°E east to 17°W longitude, chosen to approximate the possible Geostationary Lightning Mapper (GLM) longitude, was considered in its entirety and then divided into geographical subregions. Over this 18-month time period, WWLLN had an 11.0% entire region, 13.2% North American, 6.2% South American, 16.4% Atlantic Ocean, and 18.9% Pacific Ocean coincidence percent (CP) value. The ENTLN CP values were 28.5%, 63.3%, 2.2%, 3.0%, and 2.5%, respectively. During the 18 months, WWLLN CP values remained rather consistent but low and often higher over ocean than land; ENTLN CP values showed large spatial and temporal variability. With both networks, North America had less variability during summer months than winter months and higher CP values during winter months than summer months. The highest ENTLN CP values were found in the southeastern United States, especially in a semicircle that extended from central Oklahoma, through Texas, along the northern Gulf of Mexico, across southern Florida, and along the U.S. East Coast. There was no significant change in CP values over time; the lowest monthly North American ENTLN CP value was found in June 2011 at 48.1%, the last month analyzed. These findings are consistent with most ENTLN sensors being located in the United States.

Corresponding author address: Kelsey Thompson, Department of Atmospheric Science, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: kelsey.thompson@nsstc.uah.edu
Save
  • Abarca, S. F., Corbosiero K. L. , and Galarneau T. J. Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, doi:10.1029/2009JD013411.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., Koshak W. J. , and Blakeslee R. J. , 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, doi:10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buechler, D. E., Koshak W. J. , Chrisitan H. J. , and Goodman S. J. , 2014: Assessing the performance of the Lightning Imaging Sensor (LIS) using deep convective clouds. Atmos. Res.,135–136, 397403, doi:10.1016/j.atmosres.2012.09.008.

  • Christian, H. J., and Coauthors, 1999: The Lightning Imaging Sensor. 11th International Conference on Atmospheric Electricity, H. J. Christian, Ed., NASA Conf. Publ. NASA/CP—1999-209261, 746749. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990108601.pdf.]

  • Dowden, R. L., Brundell J. B. , and Rodger C. J. , 2002: VLF lightning location by time of group arrival (TOGA) at multiple sites. J. Atmos. Sol.-Terr. Phys., 64, 817830, doi:10.1016/S1364-6826(02)00085-8.

    • Search Google Scholar
    • Export Citation
  • ENTLN, 2012: Total Lightning Network. [Available online at http://www.earthnetworks.com/Products/TotalLightningNetwork.aspx.]

  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437, doi:10.1016/j.atmosres.2004.11.035.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Idone, V. P., and Orville R. E. , 1985: Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes. J. Geophys. Res., 90, 61596164, doi:10.1029/JD090iD04p06159.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., Holzworth R. , Harlin J. , Dowden R. , and Lay E. , 2006: Performance assessment of the World Wide Lightning Location Network (WWLLN), using the Los Alamos Sferic Array (LASA) as ground truth. J. Atmos. Oceanic Technol., 23, 10821092, doi:10.1175/JTECH1902.1.

    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., Krider P. , and Boccippio D. J. , 2000a: LIS validation at the KSC-CCAFS. Eos, Trans. Amer. Geophys. Union, 81 (Fall Meeting Suppl.), Abstract A52C-05, 2000.

    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., Stewart M. F. , Christian H. J. , Bergstrom J. W. , Hall J. M. , and Solakiewicz R. J. , 2000b: Laboratory calibration of the Optical Transient Detector and the Lightning Imaging Sensor. J. Atmos. Oceanic Technol., 17, 905915, doi:10.1175/1520-0426(2000)017<0905:LCOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., and Coauthors, 2004: North Alabama Lightning Mapping Array (LMA): VHF source retrieval algorithm and error analyses. J. Atmos. Oceanic Technol., 21, 543558, doi:10.1175/1520-0426(2004)021<0543:NALMAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., Thomas R. J. , Rison W. , Hamlin T. , Harlin J. , and Davis M. , 2000: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81, 2125, doi:10.1029/00EO00014.

    • Search Google Scholar
    • Export Citation
  • Lay, E. H., Holzworth R. H. , Rodger C. J. , Thomas J. N. , Pinto O. Jr., and Dowden R. L. , 2004: WWLL global lightning detection system: Regional validation study in Brazil. Geophys. Res. Lett., 31, L03102, doi:10.1029/2003GL018882.

    • Search Google Scholar
    • Export Citation
  • Lay, E. H., Jacobson A. R. , Holzworth R. H. , Rodger C. J. , and Dowden R. L. , 2007: Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. J. Geophys. Res., 112, D13111, doi:10.1029/2006JD007944.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Heckman S. , 2010: The application of total lightning detection and cell tracking for severe weather prediction. TECO-2010-WMO Tech. Conf. on Meteorological and Environmental Instruments and Methods of Observation, Helsinki, Finland, WMO, P2(7). [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-104_TECO-2010/P2_7_Heckman_USA.pdf.]

  • Mach, D. M., Christian H. J. , Blakeslee R. J. , Boccippio D. J. , Goodman S. J. , and Boeck W. L. , 2007: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res., 112, D09210, doi:10.1029/2006JD007787.

    • Search Google Scholar
    • Export Citation
  • Rison, W., Thomas R. J. , Krehbiel P. R. , Hamlin T. , and Harlin J. , 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576, doi:10.1029/1999GL010856.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., Brundell J. B. , Dowden R. L. , and Thomson N. R. , 2004: Location accuracy of long distance VLF lightning location network. Ann. Geophys., 22, 747758, doi:10.5194/angeo-22-747-2004.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., Brundell J. B. , and Dowden R. L. , 2005: Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade. Ann. Geophys., 23, 277290, doi:10.5194/angeo-23-277-2005.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., Werner S. , Brundell J. B. , Lay E. H. , Thomson N. R. , Holzworth R. H. , and Dowden R. L. , 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 31973214, doi:10.5194/angeo-24-3197-2006.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., Brundell J. B. , Holzworth R. H. , and Lay E. H. , 2009: Growing detection efficiency of the World Wide Lightning Location Network. AIP Conf. Proc.,1118, 15, doi:10.1063/1.3137706.

  • Rudlosky, S. D., and Shea D. T. , 2013: Evaluating WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett., 40, 23442348, doi:10.1002/grl.50428.

    • Search Google Scholar
    • Export Citation
  • Taylor, W. L., 1972: Atmospherics and severe storms. Remote Sensing of the Troposphere, V. E. Derr, Ed., NOAA, 17-1–17-17.

  • Thomas, R. J., Krehbiel P. R. , Rison W. , Hamlin T. , Boccippio D. J. , Goodman S. J. , and Christian H. J. , 2000: Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma. Geophys. Res. Lett., 27, 17031706, doi:10.1029/1999GL010845.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., Krehbiel P. R. , Rison W. , Hunyady S. J. , Winn W. P. , Hamlin T. , and Harlin J. , 2004: Accuracy of the Lightning Mapping Array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Uman, M. A., 1987: The Lightning Discharge.Academic Press, 377 pp.

  • Ushio, T., Driscoll K. , Heckman S. , Boccippio D. , Koshak W. , and Christian H. , 1999: Initial comparison of the Lightning Imaging Sensor (LIS) with Lightning Detection and Ranging (LDAR). 11th International Conference on Atmospheric Electricity, H. J. Christian, Ed., NASA Conf. Publ. NASA/CP—1999-209261, 738–741. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990108601.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 898 299 35
PDF Downloads 666 152 19