Cooperation or Coordination of Underwater Glider Networks? An Assessment from Observing System Simulation Experiments in the Ligurian Sea

A. Alvarez Centre for Maritime Research and Experimentation, Science and Technology Organization, NATO, La Spezia, Italy

Search for other papers by A. Alvarez in
Current site
Google Scholar
PubMed
Close
and
B. Mourre Balearic Islands Coastal Observing and Forecasting System, Palma de Mallorca, Spain

Search for other papers by B. Mourre in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The coordinated and cooperative-unaware networking of glider fleets have been proposed to obtain a performance gain in ocean sampling over naïve collective behavior. Whether one of these implementations results in a more efficient sampling of the ocean variability remains an open question. This article aims at a performance evaluation of cooperative-unaware and coordinated networks of gliders to reduce the uncertainty in operational temperature model predictions. The evaluation is based on an observing system simulation experiment (OSSE) implemented in the northern Ligurian Sea (western Mediterranean) from 21 August to 1 September 2010. The OSSE confronts the forecast skills obtained by the Regional Ocean Modeling System (ROMS) when assimilating data gathered from a cooperative and unaware network of three gliders with the prediction skill obtained when data comes from a coordinated configuration. An asynchronous formulation of the ensemble Kalman filter with a 48-h window is used to assimilate simulated temperature observations. Optimum sampling strategies of the glider networks, based on a pattern search optimization algorithm, are computed for each 48-h forecasting period using a covariance integrated in time and in the vertical direction to reduce the dimensionality of the problem and to enable a rapid resolution. Perturbations of the depth-averaged current field in glider motions are neglected. Results indicate a better performance of the coordinated network configuration due to an enhanced capacity to capture an eddy structure that is responsible for the largest forecast error in the experimental domain.

Corresponding author address: Alberto Alvarez, CMRE, Science and Technology Organization, NATO, Viale San Bartolomeo 400, 19126 La Spezia, Italy. E-mail: alvarez@cmre.nato.int

Abstract

The coordinated and cooperative-unaware networking of glider fleets have been proposed to obtain a performance gain in ocean sampling over naïve collective behavior. Whether one of these implementations results in a more efficient sampling of the ocean variability remains an open question. This article aims at a performance evaluation of cooperative-unaware and coordinated networks of gliders to reduce the uncertainty in operational temperature model predictions. The evaluation is based on an observing system simulation experiment (OSSE) implemented in the northern Ligurian Sea (western Mediterranean) from 21 August to 1 September 2010. The OSSE confronts the forecast skills obtained by the Regional Ocean Modeling System (ROMS) when assimilating data gathered from a cooperative and unaware network of three gliders with the prediction skill obtained when data comes from a coordinated configuration. An asynchronous formulation of the ensemble Kalman filter with a 48-h window is used to assimilate simulated temperature observations. Optimum sampling strategies of the glider networks, based on a pattern search optimization algorithm, are computed for each 48-h forecasting period using a covariance integrated in time and in the vertical direction to reduce the dimensionality of the problem and to enable a rapid resolution. Perturbations of the depth-averaged current field in glider motions are neglected. Results indicate a better performance of the coordinated network configuration due to an enhanced capacity to capture an eddy structure that is responsible for the largest forecast error in the experimental domain.

Corresponding author address: Alberto Alvarez, CMRE, Science and Technology Organization, NATO, Viale San Bartolomeo 400, 19126 La Spezia, Italy. E-mail: alvarez@cmre.nato.int
Save
  • Alvarez, A., and Martinez M. , 2011: A Matlab package for mission generation of a fleet of gliders. Version 1.0, CMRE Scientific Rep. NURC-SP-2011-003, 20 pp.

  • Alvarez, A., and Mourre B. , 2012: Optimum sampling designs for a glider–mooring observing network. J. Atmos. Oceanic Technol., 29, 601612, doi:10.1175/JTECH-D-11-00105.1.

    • Search Google Scholar
    • Export Citation
  • Alvarez, A., Garau B. , and Caiti A. , 2007: Combining networks of drifting profiling floats and gliders for adaptive sampling of the ocean. 2007 IEEE International Conference on Robotics and Automation, IEEE, 157162, doi:10.1109/ROBOT.2007.363780.

  • Alvarez, A., Chiggiato J. , and Mourre B. , 2013: Under the sea: Rapid characterization of restricted marine environments. IEEE Rob. Autom. Mag., 20, 4249, doi:10.1109/MRA.2012.2220505.

    • Search Google Scholar
    • Export Citation
  • Bachmayer, R., Leonard N. E. , Graver J. , Fiorelli E. , Battha P. , and Palley D. , 2004: Underwater gliders: Recent developments and future applications. UTʼ04: International Symposium on Underwater Technology, 2004, IEEE, 195–200, doi:10.1109/UT.2004.1405540.

  • Ballabrera-Poy, J., Hackert E. , Murtugudde R. , and Busalacchi A. J. , 2007: An observing system simulation experiment for an optimal moored instrument array in the tropical Indian Ocean. J. Climate, 20, 32843299, doi:10.1175/JCLI4149.1.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., and Torrisi L. , 2005: Impact of a variational objective analysis scheme on a regional area numerical model: The Italian Air Force weather service experience. Meteor. Atmos. Phys., 88, 3952, doi:10.1007/s00703-003-0071-6.

    • Search Google Scholar
    • Export Citation
  • Coope, I. D., and Price C. J. , 2002: Positive bases in numerical optimization. Comput. Optim. Appl., 21, 169175, doi:10.1023/A:1013760716801.

    • Search Google Scholar
    • Export Citation
  • Curtin, T., Bellingham J. , Catipovic J. , and Webb D. , 1993: Autonomous oceanographic sampling networks. Oceanography, 6, 8694, doi:10.5670/oceanog.1993.03.

    • Search Google Scholar
    • Export Citation
  • Dickey, T.-D., 2003: Emerging ocean observations for interdisciplinary data assimilation systems. J. Mar. Sys.,40–41, 5–48, doi:10.1016/S0924-7963(03)00011-3.

  • Eriksen, C. C., Osse T. J. , Light R. D. , Wen T. , Lehman T. W. , Sabin P. L. , Ballard J. W. , and Chiodi A. M. , 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, doi:10.1109/48.972073.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Farinelli, A., Iocchi L. , and Nardi D. , 2004: Multirobot systems: A classification focused on coordination. IEEE Trans. Syst. Man Cybern.,34B, 2015–2028, doi:10.1109/TSMCB.2004.832155.

  • Grilli, F., and Pinardi N. , 1998: The computation of Rossby radii of deformation for the Mediterranean Sea. MTP News, Vol. 6, No. 4, GRC Geociènces Marines, Universitat de Barcelona, Barcelona, Spain, 1 p.

    • Search Google Scholar
    • Export Citation
  • Hackert, E. C., Miller R. N. , and Busalacchi A. J. , 1998: An optimized design for a moored instrument array in the tropical Atlantic Ocean. J. Geophys. Res., 103, 74917509, doi:10.1029/97JC03206.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227, 35953624, doi:10.1016/j.jcp.2007.06.016.

    • Search Google Scholar
    • Export Citation
  • Hayes, D., and Coauthors, 2010: Glider transects in the Levantine Sea: A study of the warm core Cyprus eddy. Rapport Commission International Mer Méditerranée 39, CIESM, 116. [Available online at http://www.ciesm.org/online/archives/abstracts/pdf/39/PG_0116.pdf.]

  • Heaney, K. D., Gawarkiewicz G. , Duda T. F. , and Lermusiaux P. F. J. , 2007: Nonlinear optimization of autonomous undersea vehicle sampling strategies for oceanographic data assimilation. J. Field Robot., 24, 437448, doi:10.1002/rob.20183.

    • Search Google Scholar
    • Export Citation
  • Hooke, R., and Jeeves T. A. , 1961: “Direct search” solution of numerical and statistical problems. J. Assoc. Comput. Mach.,8, 212–229, doi:10.1145/321062.321069.

  • Kunzig, R., 1996: A thousand diving robots. Discover Mag., 17, 6063.

  • L’Hévéder, B., Mortier L. , Testor P. , and Lekien F. , 2013: A glider network design study for a synoptic view of the oceanic mesoscale variability. J. Atmos. Oceanic Technol., 30, 14721493, doi:10.1175/JTECH-D-12-00053.1.

    • Search Google Scholar
    • Export Citation
  • Leonard, N. E., Paley D. , Lekien F. , Sepulchre R. , Frantantoni D. M. , and Davis R. , 2007: Collective motion, sensor networks and ocean sampling. Proc. IEEE, 95, 4874, doi:10.1109/JPROC.2006.887295.

    • Search Google Scholar
    • Export Citation
  • Leonard, N. E., Paley D. , Davis R. , Fratantoni D. , Lekien F. , and Zhang F. , 2010: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Robot., 27, 718740, doi:10.1002/rob.20366.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F., 2007: Adaptive modeling, adaptive data assimilation and adaptive sampling. Physica D, 230, 172196, doi:10.1016/j.physd.2007.02.014.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., Bishop C. H. , Etherton B. J. , and Toth Z. , 2002: Adaptive sampling with the ensemble transform Kalman filter. Part II: Field program implementation. Mon. Wea. Rev., 130, 13561369, doi:10.1175/1520-0493(2002)130<1356:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., McWilliams J. C. , and Shchepetkin A. , 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Mourre, B., and Alvarez A. , 2012: Benefit assessment of glider adaptive sampling in the Ligurian Sea. Deep-Sea Res.,68, 6878, doi:10.1016/j.dsr.2012.05.010.

    • Search Google Scholar
    • Export Citation
  • Mourre, B., and Chiggiato J. , 2014: A comparison of the performance of the 3D super-ensemble and an ensemble Kalman filter for short-range regional ocean prediction. Tellus, 66A, 21640, doi:10.3402/tellusa.v66.21640.

    • Search Google Scholar
    • Export Citation
  • Mourre, B., De Mey P. , Menard Y. , Lyard F. , and Le Provost C. , 2006: Relative performance of future altimeter systems and tide gauges in constraining a model of North Sea high-frequency barotropic dynamics. Ocean Dyn., 56, 473486, doi:10.1007/s10236-006-0081-2.

    • Search Google Scholar
    • Export Citation
  • Oddo, P., Adani M. , Pinardi N. , Fratianni C. , Tonani M. , and Pettenuzzo D. , 2009: A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci. Discuss., 6, 10931127, doi:10.5194/osd-6-1093-2009.

    • Search Google Scholar
    • Export Citation
  • Osler, J., Stoner R. , and Cecchi D. , 2011: Gliders debut at Proud Manta 11 as data-gathering platforms. Sea Technol.,52, 37–41.

  • Ramp, S. R., and Coauthors, 2009: Preparing to predict: The Second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay. Deep-Sea Res. II, 56, 6886, doi:10.1016/j.dsr2.2008.08.013.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., Lermusiaux P. F. , Shulman I. , Chao Y. , Wolf R. E. , and Bahr F. L. , 2011: Oceanographic and atmospheric conditions on the continental shelf north of the Monterey Bay during August 2006. Dyn. Atmos. Oceans, 52, 192223, doi:10.1016/j.dynatmoce.2011.04.005.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., Davies R. E. , Eriksen C. C. , Fratantoni D. M. , and Perry M. J. , 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 73–84, doi:10.4031/002533204787522703.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., Evensen G. , and Bertino L. , 2010: Asynchronous data assimilation with the EnKF. Tellus, 62A, 2429, doi:10.1111/j.1600-0870.2009.00417.x.

    • Search Google Scholar
    • Export Citation
  • Sherman, R. E., Davis R. , Owens W. B. , and Valdes J. , 2001: The autonomous underwater glider “Spray.” IEEE J. Oceanic Eng., 26, 437446, doi:10.1109/48.972076.

    • Search Google Scholar
    • Export Citation
  • Testor, P., and Coauthors, 2010: Gliders as a component of future observing systems. Proceedings of OceanObsʼ09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.89.

  • Webb, D. C., Simonetti P. J. , and Jones C. P. , 2001: SLOCUM: An underwater glider propelled by environmental energy. IEEE J. Oceanic Eng., 26, 447452, doi:10.1109/48.972077.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, N. K., 2006: Path planning of autonomous underwater vehicles for adaptive sampling. Ph.D. thesis, Massachusetts Institute of Technology, 244 pp. [Available online at http://hdl.handle.net/1721.1/35618.]

  • Yilmaz, N. K., Evangelinos C. , Lermusiaux P. F. J. , and Patrikalakis N. , 2008: Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE J. Oceanic Eng., 33, 522537, doi:10.1109/JOE.2008.2002105.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Fratantoni D. M. , Paley D. A. , Lund J. M. , and Leonard N. E. , 2007: Control of coordinated patterns for ocean sampling. Int. J. Control, 80, 11861199, doi:10.1080/00207170701222947.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 483 101 19
PDF Downloads 248 64 3