Response of FSSP-100 and PVM-100A to Small Ice Crystals

H. Gerber Gerber Scientific, Inc., Reston, Virginia

Search for other papers by H. Gerber in
Current site
Google Scholar
PubMed
Close
and
P. J. DeMott Colorado State University, Fort Collins, Colorado

Search for other papers by P. J. DeMott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Correction factors Cf are derived for ice-crystal volume and effective radius Re, measured by Forward Scattering Spectrometer Probe (FSSP) and Particulate Volume Monitor (PVM) that are known to overestimate both parameters for nonspherical particles. Correction factors are based on ice-crystal volume and the projected area of randomly oriented model ice crystals with column, rosette, capped-column, and dendrite habits described by Takano and Liou. In addition, Cf are calculated for oblate and prolate spheroids. To test Cf, both probes are compared to small, predominately solid hexagonal ice-crystal plates and columns generated in the Colorado State University (CSU) Dynamic Cloud Chamber (DCC). The tendency of heat released by the PVM (placed inside the chamber) to evaporate ice crystals and the smaller upper size range of the PVM than the size range of the FSSP caused large differences in the probes’ outputs for most comparisons in the DCC. Correction factors improved the accuracy of Re measured by the FSSP for the solid hexagonal crystals, and both probes produced similar results for the projected area and ice water content when crystal sizes fell within the probes’ size ranges. The modification for minimizing ice-crystal shattering and the application of Cf for forward scatter probes such as the FSSP suggests the probes’ improved usefulness for measuring small ambient ice crystals.

Corresponding author address: Hermann Gerber, Gerber Scientific, Inc., 1643 Bentana Way, Reston, VA 20190. E-mail: hgerber6@comcast.net

Abstract

Correction factors Cf are derived for ice-crystal volume and effective radius Re, measured by Forward Scattering Spectrometer Probe (FSSP) and Particulate Volume Monitor (PVM) that are known to overestimate both parameters for nonspherical particles. Correction factors are based on ice-crystal volume and the projected area of randomly oriented model ice crystals with column, rosette, capped-column, and dendrite habits described by Takano and Liou. In addition, Cf are calculated for oblate and prolate spheroids. To test Cf, both probes are compared to small, predominately solid hexagonal ice-crystal plates and columns generated in the Colorado State University (CSU) Dynamic Cloud Chamber (DCC). The tendency of heat released by the PVM (placed inside the chamber) to evaporate ice crystals and the smaller upper size range of the PVM than the size range of the FSSP caused large differences in the probes’ outputs for most comparisons in the DCC. Correction factors improved the accuracy of Re measured by the FSSP for the solid hexagonal crystals, and both probes produced similar results for the projected area and ice water content when crystal sizes fell within the probes’ size ranges. The modification for minimizing ice-crystal shattering and the application of Cf for forward scatter probes such as the FSSP suggests the probes’ improved usefulness for measuring small ambient ice crystals.

Corresponding author address: Hermann Gerber, Gerber Scientific, Inc., 1643 Bentana Way, Reston, VA 20190. E-mail: hgerber6@comcast.net
Save
  • Baumgardner, D., and Coauthors, 2011: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook’s tour of mature and emerging technology. Atmos. Res., 102,1029, doi:10.1016/j.atmosres.2011.06.021.

    • Search Google Scholar
    • Export Citation
  • Borrmann, S. A., Luo B. , and Mishenko M. , 2000: Application of the -matrix method to the measurement of aspheric (ellipsoidal) particles with forward scattering optical particle counters. J. Aerosol Sci., 31, 789799, doi:10.1016/S0021-8502(99)00563-7.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1988: Comparison of the behavior of AgI-type ice nucleating aerosols in the laboratory-simulated clouds. J. Wea. Modif., 20, 444450.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29, 10721079, doi:10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1995: Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res., 38, 6399, doi:10.1016/0169-8095(94)00088-U.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Rogers D. C. , 1990: Freezing nucleation rates of dilute solution droplets measured between −30°C and −40°C in laboratory simulations of natural clouds. J. Atmos. Sci., 47, 10561064, doi:10.1175/1520-0469(1990)047<1056:FNRODS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Febvre, G., Gayet J.-F. , Shcherbakov V. , Gourbeyre C. , and Jourdan O. , 2012: Effects of ice crystals on the FSSP measurements in mixed phase clouds. Atmos. Chem. Phys. Discuss., 12, 79097947, doi:10.5194/acpd-12-7909-2012.

    • Search Google Scholar
    • Export Citation
  • Foot, J. S., 1988: Some observations of the optical properties of clouds. Quart. J. Roy. Meteor. Soc., 114, 145164, doi:10.1002/qj.49711447908.

    • Search Google Scholar
    • Export Citation
  • Gardiner, B. A., and Hallett J. , 1985: Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles. J. Atmos. Oceanic Technol., 2, 171180, doi:10.1175/1520-0426(1985)002<0171:DOICFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., Febvre G. , and Larsen H. , 1996: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol., 13, 13001310, doi:10.1175/1520-0426(1996)013<1300:TROTPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., and Coauthors, 2012: The evolution of microphysical and optical properties of an A380 contrail in the vortex phase. Atmos. Chem. Phys., 12, 66296643, doi:10.5194/acp-12-6629-2012.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., DeMott P. J. , and Rogers D. C. , 1995: Laboratory investigation of direct measurement of ice water content, ice surface area, and effective radius of ice crystals using a laser-diffraction instrument. NASA Ames Research Center Tech. Rep. NAS2-1426, 142 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000023203.pdf.]

  • Gerber, H., Twohy C. H. , Gandrud B. , Heymsfield A. J. , McFarquhar G. M. , DeMott P. J. , and Rogers D. C. , 1998: Measurements of wave-cloud microphysical properties with two new aircraft probes. Geophys. Res. Lett., 25, 11171120, doi:10.1029/97GL03310.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., Takano Y. , Garrett T. J. , and Hobbs P. V. , 2000: Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds. J. Atmos. Sci., 57, 30213034, doi:10.1175/1520-0469(2000)057<3021:NMOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2007: On the measurement of small ice particles in clouds. Geophys. Res. Lett., 34, doi:10.1029/2007GL030951.

  • Heymsfield, A. J., and Miloshevich L. M. , 2003: Parameterization for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60, 936956, doi:10.1175/1520-0469(2003)060<0936:PFTCSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Lewis S. , Bansemer A. , Iaquinta J. , and Miloschevich L. M. , 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329, doi:10.1175/1520-0469(2002)059<0003:AGAFDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Bansemer A. , Schmitt C. , Twohy C. H. , and Poellot M. R. , 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Bansemer A. , and Twohy C. H. , 2007a: Refinements of ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64, 10471067, doi:10.1175/JAS3890.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Van Zadelhoff G.-J. , Donovan D. P. , Fabry F. , Hogan R. J. , and Illingsworth A. J. , 2007b: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part II: Evaluation and parameterization of ensemble ice particle sedimentation velocities. J. Atmos. Sci., 64, 10681088, doi:10.1175/JAS3900.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Schmitt C. , Bansemer A. , and Twohy C. H. , 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Hodkinson, J. R., 1966: The optical measurement of aerosols. Aerosol Science, C. N. Davies, Ed., Academic Press, 287–357.

  • Jensen, E. J., and Coauthors, 2009: On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys., 9, 55195537, doi:10.5194/acp-9-5519-2009.

    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1995: Orientation model for particles in turbulence. J. Atmos. Sci., 52, 22762285, doi:10.1175/1520-0469(1995)052<2276:OMFPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., Emery E. F. , Strapp J. W. , Cober S. G. , Isaac G. A. , Wasey M. , and Marcotte D. , 2011: Small ice particles in tropospheric clouds: Fact of artifact? Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., Emery E. , and Creelman K. , 2013: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol.,30, 690–708, doi:10.1175/JTECH-D-12-00142.1.

  • Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere: Theory, Observations, and Modeling. Oxford University Press, 487 pp.

  • Locatelli, J. D., and Hobbs P. V. , 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1957: The Physics of Clouds.Oxford University Press, 671 pp.

  • McFarquhar, G. M., Um J. , Freer M. , Baumgardner D. , and Kok G. L. , 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., Abshire N. L. , and McNice G. T. , 1978: Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals. J. Appl. Meteor., 17, 12201224, doi:10.1175/1520-0450(1978)017<1220:SMPOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Redder, C. R., and Fukuta N. , 1989: Empirical equations of ice crystal growth microphysics for modeling and analysis, I. Mass and dimensions. Atmos. Res., 24, 247272, doi:10.1016/0169-8095(89)90048-3.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and Heymsfield A. J. , 2007: On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus. J. Atmos. Sci., 64, 45144519, doi:10.1175/2007JAS2317.1.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and Heymsfield A. J. , 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, doi:10.1175/2009JAS3187.1.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and Liou K. N. , 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, doi:10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and Liou K. N. , 1995: Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci., 52, 818837, doi:10.1175/1520-0469(1995)052<0818:RTICCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tee, G. J., 2005: Surface area and capacity of ellipsoids in n dimensions. N. Z. J. Math., 34, 165198.

  • Van De Hulst, H. C., 1962: Light Scattering by Small Particles.John Wiley & Sons, 470 pp.

  • Wendisch, M., and Brenguier J.-L. , Eds., 2013: Airborne Measurements for Environmental Research: Methods and Instruments. Series in Atmospheric Physics and Remote Sensing, Wiley, 641 pp., doi:10.1002/9783527653218.

  • Young, D. F., Minnis P. , Baumgardner D. , and Gerber H. , 1998: Comparison of in situ and satellite-derived cloud properties during SUCCESS. Geophys. Res. Lett., 25, 11251128, doi:10.1029/98GL00116.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., Yang P. , and Dessler A. E. , 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations. J. Appl. Meteor. Climatol., 51, 14261439, doi:10.1175/JAMC-D-11-0265.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 447 133 48
PDF Downloads 122 21 0