Connecting the Time Series of Microwave Sounding Observations from AMSU to ATMS for Long-Term Monitoring of Climate

Xiaolei Zou Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Xiaolei Zou in
Current site
Google Scholar
PubMed
Close
,
Fuzhong Weng NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland

Search for other papers by Fuzhong Weng in
Current site
Google Scholar
PubMed
Close
, and
H. Yang Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by H. Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The measurements from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) on board NOAA polar-orbiting satellites have been extensively utilized for detecting atmospheric temperature trend during the last several decades. After the launch of the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite on 28 October 2011, MSU and AMSU-A time series will be overlapping with the Advanced Technology Microwave Sounder (ATMS) measurements. While ATMS inherited the central frequency and bandpass from most of AMSU-A sounding channels, its spatial resolution and noise features are, however, distinctly different from those of AMSU. In this study, the Backus–Gilbert method is used to optimally resample the ATMS data to AMSU-A fields of view (FOVs). The differences between the original and resampled ATMS data are demonstrated. By using the simultaneous nadir overpass (SNO) method, ATMS-resampled observations are collocated in space and time with AMSU-A data. The intersensor biases are then derived for each pair of ATMS–AMSU-A channels. It is shown that the brightness temperatures from ATMS now fall well within the AMSU data family after resampling and SNO cross calibration. Thus, the MSU–AMSU time series can be extended into future decades for more climate applications.

Corresponding author address: Dr. X. Zou, Department of Earth, Ocean and Atmospheric Science, Florida State University, Mail Code 4520, P.O. Box 3064520, Tallahassee, FL 32306-4520. E-mail: xzou@fsu.edu

Abstract

The measurements from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) on board NOAA polar-orbiting satellites have been extensively utilized for detecting atmospheric temperature trend during the last several decades. After the launch of the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite on 28 October 2011, MSU and AMSU-A time series will be overlapping with the Advanced Technology Microwave Sounder (ATMS) measurements. While ATMS inherited the central frequency and bandpass from most of AMSU-A sounding channels, its spatial resolution and noise features are, however, distinctly different from those of AMSU. In this study, the Backus–Gilbert method is used to optimally resample the ATMS data to AMSU-A fields of view (FOVs). The differences between the original and resampled ATMS data are demonstrated. By using the simultaneous nadir overpass (SNO) method, ATMS-resampled observations are collocated in space and time with AMSU-A data. The intersensor biases are then derived for each pair of ATMS–AMSU-A channels. It is shown that the brightness temperatures from ATMS now fall well within the AMSU data family after resampling and SNO cross calibration. Thus, the MSU–AMSU time series can be extended into future decades for more climate applications.

Corresponding author address: Dr. X. Zou, Department of Earth, Ocean and Atmospheric Science, Florida State University, Mail Code 4520, P.O. Box 3064520, Tallahassee, FL 32306-4520. E-mail: xzou@fsu.edu
Save
  • Caccin, B., Roberti C. , Russo P. , and Smaldone L. A. , 1992: The Backus-Gilbert inversion method and the processing of sampled data. IEEE Trans. Signal Process., 40, 28232825, doi:10.1109/78.165672.

    • Search Google Scholar
    • Export Citation
  • Cao, C., Weinreb M. , and Xu H. , 2004: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol., 21, 537542, doi:10.1175/1520-0426(2004)021<0537:PSNOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., Spencer R. W. , and Lobl E. S. , 1998: Analysis of the merging procedure for the MSU daily temperature time series. J. Climate, 11, 20162041, doi:10.1175/1520-0442-11.8.2016.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., Spencer R. W. , and Braswell W. D. , 2000: MSU tropospheric temperatures: Dataset construction and radiosonde comparisons. J. Atmos. Oceanic Technol., 17, 11531170, doi:10.1175/1520-0426(2000)017<1153:MTTDCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., Spencer R. W. , Norris W. B. , Braswell W. D. , and Parker D. E. , 2003: Error estimates of version 5.0 of MSU–AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Technol., 20, 613629, doi:10.1175/1520-0426(2003)20<613:EEOVOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrar, M. R., and Smith E. A. , 1992: Spatial resolution enhancement of terrestrial features using deconvolved SSM/I microwave brightness temperatures. IEEE Trans. Geosci. Remote Sens., 30, 349355, doi:10.1109/36.134084.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., Stephens G. L. , Vonder Haar T. H. , and Jackson D. L. , 1993: A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations. J. Geophys. Res., 98, 18 47118 488, doi:10.1029/93JD00339.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., Vinnikov K. Ya. , Goldberg M. D. , Sullivan J. T. , and Tarpley J. D. , 2004: Calibration of multisatellite observations for climate studies: Microwave Sounding Unit (MSU). J. Geophys. Res., 109, D24104, doi:10.1029/2004JD005079.

    • Search Google Scholar
    • Export Citation
  • Kirsch, A., Schomburg B. , and Berendt G. , 1988: The Backus-Gilbert method. Inverse Probl., 4, 771, doi:10.1088/0266-5611/4/3/014.

  • Long, D. G., and Daum D. L. , 1998: Spatial resolution enhancement of SSM/I data. IEEE Trans. Geosci. Remote Sens., 36, 407417, doi:10.1109/36.662726.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., and Wentz F. J. , 2009: Construction of the RSS V3.2 lower-tropospheric temperature dataset from the MSU and AMSU microwave sounders. J. Atmos. Oceanic Technol., 26, 14931509, doi:10.1175/2009JTECHA1237.1.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., Schabel M. C. , and Wentz F. J. , 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16, 36503664, doi:10.1175/1520-0442(2003)016<3650:AROTMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, T., 2009: A study of the NOAA-15 AMSU-A brightness temperatures from 1998 through 2007. J. Geophys. Res.,114, D11110, doi:10.1029/2008JD011267.

    • Search Google Scholar
    • Export Citation
  • Poe, G. A., 1990: Optimum interpolation of imaging microwave radiometer data. IEEE Trans. Geosci. Remote Sens., 28, 800810, doi:10.1109/36.58966.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. D., Kummerow C. , and Olson W. S. , 1992: A technique for enhancing and matching the resolution of microwave measurements from the SSM/I instrument. IEEE Trans. Geosci. Remote Sens., 30, 419429, doi:10.1109/36.142920.

    • Search Google Scholar
    • Export Citation
  • Sethmann, R., Burns B. A. , and Heygster G. C. , 1994: Spatial resolution improvement of SSM/I data with image restoration techniques. IEEE Trans. Geosci. Remote Sens.,32, 11441151, doi:10.1109/36.338362.

    • Search Google Scholar
    • Export Citation
  • Stogryn, A., 1978: Estimates of brightness temperatures from scanning radiometer data. IEEE Trans. Antennas Propag., 26, 720726, doi:10.1109/TAP.1978.1141919.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Ya., and Grody N. C. , 2003: Global warming trend of mean tropospheric temperature observed by satellites. Science, 302, 269272, doi:10.1126/science.1087910.

    • Search Google Scholar
    • Export Citation
  • Weng, F., and Grody N. C. , 1994: Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J. Geophys. Res., 99, 25 53525 551, doi:10.1029/94JD02304.

    • Search Google Scholar
    • Export Citation
  • Weng, F., and Grody N. C. , 2000: Retrieval of ice cloud parameters using a microwave imaging radiometer. J. Atmos. Sci., 57, 10691081, doi:10.1175/1520-0469(2000)057<1069:ROICPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weng, F., and Zou X. , 2013: Errors from Rayleigh–Jeans approximation in satellite microwave radiometer calibration systems. Appl. Opt., 52, 505508, doi:10.1364/AO.52.000505.

    • Search Google Scholar
    • Export Citation
  • Weng, F., Grody N. C. , Ferraro R. , Basist A. , and Forsyth D. , 1997: Cloud liquid water climatology from the Special Sensor Microwave/Imager. J. Climate, 10, 10861098, doi:10.1175/1520-0442(1997)010<1086:CLWCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weng, F., Zhao L. , Ferraro R. R. , Poe G. , Li X. , and Grody N. C. , 2003: Advanced Microwave Sounding Unit cloud and precipitation algorithms. Radio Sci.,38, 8068, doi:10.1029/2002RS002679.

  • Weng, F., Zou X. , Wang X. , Yang S. , and Goldberg M. D. , 2012: Introduction to Suomi National Polar-orbiting Partnership Advanced Technology Microwave Sounder for numerical weather prediction and tropical cyclone applications. J. Geophys. Res.,117, D19112, doi:10.1029/2012JD018144.

    • Search Google Scholar
    • Export Citation
  • Weng, F., Yang H. , and Zou X. , 2013: On convertibility from antenna to sensor brightness temperature for ATMS. IEEE Geosci. Remote Sens. Lett., 10, 771–775, doi:10.1109/LGRS.2012.2223193.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for Special Sensor Microwave/Imager. J. Geophys. Res., 102, 87038718, doi:10.1029/96JC01751.

    • Search Google Scholar
    • Export Citation
  • Yan, B., and Weng F. , 2008: Intercalibration between special sensor microwave imager/sounder and special sensor microwave imager. IEEE Trans. Geosci. Remote Sens., 46, 984995, doi:10.1109/TGRS.2008.915752.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., Goldberg M. D. , Cheng Z. , Grody N. C. , Sullivan J. T. , Cao C. , and Tarpley D. , 2006: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res.,111, D19114, doi:10.1029/2005JD006798.

  • Zou, C.-Z., Gao M. , and Goldberg M. D. , 2009: Error structure and atmospheric temperature trends in observations from the Microwave Sounding Unit. J. Climate, 22, 16611681, doi:10.1175/2008JCLI2233.1.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Weng F. , Zhang B. , Lin L. , Qin Z. , and Tallapragada V. , 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos.,118, 11 558–11 576, doi:10.1002/2013JD020405.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Lin L. , and Weng F. , 2014: Absolute calibration of ATMS upper level temperature sounding channels using GPS RO observations. IEEE Trans. Geosci. Remote Sens., 52, 1397–1406, doi:10.1109/TGRS.2013.2250981.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 519 239 57
PDF Downloads 225 61 3