A New Quasi-Horizontal Glider to Measure Biophysical Microstructure

Herminio Foloni-Neto * Tokyo University of Marine Science and Technology, Tokyo, Japan

Search for other papers by Herminio Foloni-Neto in
Current site
Google Scholar
PubMed
Close
,
Rolf Lueck Rockland Scientific International, Inc., Victoria, British Columbia, Canada

Search for other papers by Rolf Lueck in
Current site
Google Scholar
PubMed
Close
,
Yoshiro Mabuchi JFE Advantech Co., Ltd., Hyogo, Japan

Search for other papers by Yoshiro Mabuchi in
Current site
Google Scholar
PubMed
Close
,
Hisato Nakamura Kyodo KY-Tec Corp., Tokyo, Japan

Search for other papers by Hisato Nakamura in
Current site
Google Scholar
PubMed
Close
,
Masakazu Arima Osaka Prefecture University, Osaka, Japan

Search for other papers by Masakazu Arima in
Current site
Google Scholar
PubMed
Close
, and
Hidekatsu Yamazaki * Tokyo University of Marine Science and Technology, Tokyo, Japan

Search for other papers by Hidekatsu Yamazaki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study describes the development of a new tethered quasi-horizontal microstructure profiler: the Turbulence Ocean Microstructure Acquisition Profiler–Glider [TurboMAP-Glider (TMG)]. It is a unique instrument, capable of measuring ocean microstructure (temperature and turbulent velocity shear), chlorophyll, and turbidity simultaneously through a quasi-horizontal perspective. Three field experiments were carried out near Joga-shima, Japan, to test the TMG flight performance, and those results as well as comparisons with a laser-based vertical profiler, TurboMAP-L (TM), are described here. The TMG was capable of flying with an angle of attack of less than 25° and was reasonably stable for up to 300 m horizontally over 100-m depth. Some new and relevant empirical results about quasi-horizontal application of high-resolution chlorophyll-a fluorescence sensors are presented. The ratio between the Thorpe length scale and the Ozmidov length scale was used as a tracer to demonstrate that most of the TMG density inversions are due to horizontal variability and not to vertical overturning. These waveform structures are probably due to the horizontal inhomogeneity of the density field and are likely caused by internal waves.

Corresponding author address: Hidekatsu Yamazaki, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan. E-mail: hide@kaiyodai.ac.jp

Abstract

This study describes the development of a new tethered quasi-horizontal microstructure profiler: the Turbulence Ocean Microstructure Acquisition Profiler–Glider [TurboMAP-Glider (TMG)]. It is a unique instrument, capable of measuring ocean microstructure (temperature and turbulent velocity shear), chlorophyll, and turbidity simultaneously through a quasi-horizontal perspective. Three field experiments were carried out near Joga-shima, Japan, to test the TMG flight performance, and those results as well as comparisons with a laser-based vertical profiler, TurboMAP-L (TM), are described here. The TMG was capable of flying with an angle of attack of less than 25° and was reasonably stable for up to 300 m horizontally over 100-m depth. Some new and relevant empirical results about quasi-horizontal application of high-resolution chlorophyll-a fluorescence sensors are presented. The ratio between the Thorpe length scale and the Ozmidov length scale was used as a tracer to demonstrate that most of the TMG density inversions are due to horizontal variability and not to vertical overturning. These waveform structures are probably due to the horizontal inhomogeneity of the density field and are likely caused by internal waves.

Corresponding author address: Hidekatsu Yamazaki, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan. E-mail: hide@kaiyodai.ac.jp
Save
  • Ara, K., and Hiromi J. , 2007: Temporal variability in primary and copepod production in Sagami Bay, Japan. J. Plankton Res., 29, i85–i96, doi:10.1093/plankt/fbl069.

    • Search Google Scholar
    • Export Citation
  • Arima, M., Nakamura H. , and Yamazaki H. , 2010: Development of the glider-type turbulence ocean microstructures acquisition profiler, TurboMap-G. Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference, J. S. Chung et al., Eds., Vol. 1, ISOPE, 309314.

  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, doi:10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Doubell, M. J., Yamazaki H. , Li H. , and Kokubu Y. , 2009: An advanced laser-based fluorescence microstructure profiler (TurboMap-L) for measuring bio-physical coupling in aquatic systems. J. Plankton Res., 31, 14411452, doi:10.1093/plankt/fbp092.

    • Search Google Scholar
    • Export Citation
  • Doubell, M. J., Prairie J. C. , and Yamazaki H. , 2014: Millimeter scale profiles of chlorophyll fluorescence: Deciphering the microscale spatial structure of phytoplankton. Deep-Sea Res. II, 101, 207215, doi:10.1016/j.dsr2.2012.12.009.

    • Search Google Scholar
    • Export Citation
  • Finnigan, T. D., Luther D. S. , and Lukas R. , 2002: Observations of enhanced diapycnal mixing near the Hawaiian ridge. J. Phys. Oceanogr., 32, 29883002, doi:10.1175/1520-0485(2002)032<2988:OOEDMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., Osborn T. R. , and Nasmyth P. W. , 1984: Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144, 231280, doi:10.1017/S0022112084001592.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1996: Processes in the surface mixed layer of the ocean. Dyn. Atmos. Oceans, 23, 1934, doi:10.1016/0377-0265(95)00421-1.

    • Search Google Scholar
    • Export Citation
  • Goodman, L., Levine E. R. , and Lueck R. G. , 2006: On measuring the terms of the turbulent kinetic energy budget from an AUV. J. Atmos. Oceanic Technol., 23, 977990, doi:10.1175/JTECH1889.1.

    • Search Google Scholar
    • Export Citation
  • Greenan, B. J. W., and Oakey N. S. , 1999: A tethered free-fall glider to measure ocean turbulence. J. Atmos. Oceanic Technol., 16, 15451555, doi:10.1175/1520-0426(1999)016<1545:ATFFGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, M., and Furuya K. , 2000: Size and species-specific primary productivity and community structure of phytoplankton in Tokyo Bay. J. Plankton Res., 22, 12211235, doi:10.1093/plankt/22.7.1221.

    • Search Google Scholar
    • Export Citation
  • He, M., Williams C. D. , and Bachmayer R. , 2009: Additional modelling for the prediction of the performance of ocean gliders. Sixth International Symposium on Underwater Technology 2009, W. Cui, M. Zhang, and B.-L. Xang, Eds., China Ship Scientific Research Center, 158164.

  • Levine, M. D., and Boyd T. J. , 2006: Tidally forced internal waves and overturns observed on a slope: Results from the HOME. J. Phys. Oceanogr., 36, 11841201, doi:10.1175/JPO2887.1.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., Wolk F. , and Yamazaki H. , 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr., 58, 153174, doi:10.1023/A:1015837020019.

    • Search Google Scholar
    • Export Citation
  • Macoun, P., and Lueck R. , 2004: Modeling the spatial response of the airfoil shear probe using different sized probes. J. Atmos. Oceanic Technol., 21, 284297, doi:10.1175/1520-0426(2004)021<0284:MTSROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masunaga, E., and Yamazaki H. , 2014: A new tow-yo instrument to observe high-resolution coastal phenomena. J. Mar. Syst., 129, 425–436, doi:10.1016/j.jmarsys.2013.09.005.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and Smyth W. D. , 2001: Upper ocean mixing processes. Encyclopedia of Ocean Sciences, J. H. Steele, S. A. Thorpe, and K. K. Turekian, Eds., Vol. 6, Academic Press, 3093–3100.

  • Nasmyth, P. W., 1970: Oceanic turbulence. Ph.D. thesis, University of British Columbia, 69 pp.

  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, doi:10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., and Elliott J. A. , 1982: Dissipation within the surface mixed layer. J. Phys. Oceanogr., 12, 171185, doi:10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Izv., Acad. Sci., USSR, Atmos. Oceanic Phys., 1, 853860.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2012: Measuring overturns with gliders. J. Mar. Res., 70, 93117, doi:10.1357/002224012800502417.

  • Wesson, J. C., and Gregg M. C. , 1994: Mixing at Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99, 98479878, doi:10.1029/94JC00256.

    • Search Google Scholar
    • Export Citation
  • Wolk, F., Seuront L. , and Yamazaki H. , 2001: Spatial resolution of a new micro-optical probe for chlorophyll and turbidity. J. Tokyo Univ. Fish., 87, 1321.

    • Search Google Scholar
    • Export Citation
  • Wolk, F., Yamazaki H. , Seuront L. , and Lueck R. G. , 2002: A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Oceanic Technol., 19, 780793, doi:10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolk, F., Yamazaki H. , Li H. , and Lueck R. G. , 2006: Calibrating the spatial response of bio-optical sensors. J. Atmos. Oceanic Technol., 23, 511516, doi:10.1175/JTECH1863.1.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., Mackas D. L. , and Denman K. L. , 2002: Coupling small-scale physical processes with biology. Biological–Physical Interactions in the Sea: Emergent Findings and New Directions, A. R. Robinson, J. J. McCarthy, and B. J. Rothschild, Eds., The Sea: Ideas and Observations on Progress in the Study of the Seas, Vol. 12, Harvard University Press, 51–112.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 102 5
PDF Downloads 133 41 3