Comparison of Global and Seasonal Characteristics of Cloud Phase and Horizontal Ice Plates Derived from CALIPSO with MODIS and ECMWF

Maki Hirakata Earth Observation Research Center, Japan Aerospace Exploration Agency, Ibaraki, Japan

Search for other papers by Maki Hirakata in
Current site
Google Scholar
PubMed
Close
,
Hajime Okamoto Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

Search for other papers by Hajime Okamoto in
Current site
Google Scholar
PubMed
Close
,
Yuichiro Hagihara Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

Search for other papers by Yuichiro Hagihara in
Current site
Google Scholar
PubMed
Close
,
Tadahiro Hayasaka Center for Atmospheric and Oceanic Studies, Tohoku University, Miyagi, Japan

Search for other papers by Tadahiro Hayasaka in
Current site
Google Scholar
PubMed
Close
, and
Riko Oki Earth Observation Research Center, Japan Aerospace Exploration Agency, Ibaraki, Japan

Search for other papers by Riko Oki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzed the global and seasonal characteristics of cloud phase and ice crystal orientation (CTYPE-lidar) by using the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). A dataset from September 2006 to August 2007 was used to derive the seasonal characteristics. The discrimination scheme was originally developed by Yoshida et al., who classified clouds mainly into warm water, supercooled water, and randomly oriented ice crystals or horizontally oriented ice plates. This study used the following products for the comparison with CTYPE-lidar: (i) the vertical feature mask (VFM) of the National Aeronautics and Space Administration (NASA), (ii) the Moderate Resolution Imaging Spectroradiometer (MODIS), and (iii) European Centre for Medium-Range Weather Forecasts (ECMWF). Overall, the results showed that the CTYPE-lidar discrimination scheme was consistent with the outputs from VFM, MODIS, and ECMWF. The zonal mean water cloud cover in daytime from this study showed good agreement with that derived from MODIS; the slope of the linear regression was 1.06 and the offset was 0.002. The CTYPE-lidar ice cloud occurrence frequency and the ECMWF ice supersaturation occurrence frequency were also in good agreement; the slope of the linear regression of the two products was 1.02 in the temperature range −60°C ≤ T ≤ −30°C. The maximum occurrence frequencies in this study and ECMWF were recognized around −60°C of the equator, with their peak shifted from several degrees north (~9°N) in September–November (SON) to south (~9°S) in December–February (DJF) and back to north (~7°N) in March–May (MAM) and June–August (JJA).

Corresponding author address: Ms. Maki Hirakata, Earth Observation Research Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan. E-mail: hirakata.maki@jaxa.jp

Abstract

This study analyzed the global and seasonal characteristics of cloud phase and ice crystal orientation (CTYPE-lidar) by using the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). A dataset from September 2006 to August 2007 was used to derive the seasonal characteristics. The discrimination scheme was originally developed by Yoshida et al., who classified clouds mainly into warm water, supercooled water, and randomly oriented ice crystals or horizontally oriented ice plates. This study used the following products for the comparison with CTYPE-lidar: (i) the vertical feature mask (VFM) of the National Aeronautics and Space Administration (NASA), (ii) the Moderate Resolution Imaging Spectroradiometer (MODIS), and (iii) European Centre for Medium-Range Weather Forecasts (ECMWF). Overall, the results showed that the CTYPE-lidar discrimination scheme was consistent with the outputs from VFM, MODIS, and ECMWF. The zonal mean water cloud cover in daytime from this study showed good agreement with that derived from MODIS; the slope of the linear regression was 1.06 and the offset was 0.002. The CTYPE-lidar ice cloud occurrence frequency and the ECMWF ice supersaturation occurrence frequency were also in good agreement; the slope of the linear regression of the two products was 1.02 in the temperature range −60°C ≤ T ≤ −30°C. The maximum occurrence frequencies in this study and ECMWF were recognized around −60°C of the equator, with their peak shifted from several degrees north (~9°N) in September–November (SON) to south (~9°S) in December–February (DJF) and back to north (~7°N) in March–May (MAM) and June–August (JJA).

Corresponding author address: Ms. Maki Hirakata, Earth Observation Research Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan. E-mail: hirakata.maki@jaxa.jp
Save
  • Ackerman, S. A., Holz R. E. , Frey R. , Eloranta E. W. , Maddux B. C. , and McGill M. , 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, doi:10.1175/2007JTECHA1053.1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Kubar T. , and Lambrigtsen B. , 2012: Phenomenological description of tropical clouds using CloudSat cloud classification. Mon. Wea. Rev., 140, 32353249, doi:10.1175/MWR-D-11-00247.1.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A. 2003: CloudSat AN–ECMWF ancillary data interface control document. Version 2, JPL Doc., 16 pp. [Available online at http://www.cloudsat.cira.colostate.edu/ICD/AN-ECMWF/AN-ECMWF_doc_v4.pdf.]

  • Buriez, J. C., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18, 27852813, doi:10.1080/014311697217332.

    • Search Google Scholar
    • Export Citation
  • Cho, H., Yang P. , Kattawar G. W. , Nasiri S. L. , Hu Y. , Minnis P. , Trepte C. , and Winker D. , 2008: Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements. Opt. Express, 16, 39313948, doi:10.1364/OE.16.003931.

    • Search Google Scholar
    • Export Citation
  • CloudSat Project, 2008: CloudSat standard data products handbook. CIRA, Colorado State University, 18 pp. [Available online at http://www.cloudsat.cira.colostate.edu/cloudsat_documentation/CloudSat_Data_Users_Handbook.pdf.]

  • DelGenio, A. D., Yao M. S. , Kovari W. , and Lo K. K. W. , 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9, 270304, doi:10.1175/1520-0442(1996)009<0270:APCWPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., Herman M. , Chepfer H. , Riedi J. , Brogniez G. , Couvert P. , and Séze G. , 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105, 14 747–14 759, doi:10.1029/1999JD901183.

    • Search Google Scholar
    • Export Citation
  • Hagihara, Y., Okamoto H. , and Yoshida R. , 2010: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution. J. Geophys. Res.,115, D00H33, doi:10.1029/2009JD012344.

  • Hagihara, Y., Okamoto H. , and Luo Z. J. , 2014: Joint analysis of cloud top heights from CloudSat and CALIPSO: New insights into cloud top microphysics. J. Geophys. Res. Atmos.,119, 4087–4106, doi:10.1002/2013JD020919.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Iaquinta J. , 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57, 916938, doi:10.1175/1520-0469(2000)057<0916:CCTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., Chou M.-D. , Suarez M. , and Lau K.-M. , 1998: Effect of ice cloud on GCM climate simulations. Geophys. Res. Lett., 25, 7174, doi:10.1029/97GL03356.

    • Search Google Scholar
    • Export Citation
  • Holz, R. E., Ackerman S. A. , Nagle F. W. , Frey R. , Dutcher S. , Kuehn R. E. , Vaughan M. A. , and Baum B. , 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, doi:10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Hostetler, C. A., and Coauthors, 2006: CALIOP Algorithm Theoretical Basis Document: Calibration and level 1 data products. Release 1.0, NASA Langley Research Center Doc. PC-SCI-201, 66 pp. [Available online at http://calipsovalidation.hamptonu.edu/PC-SCI-201v1.0.pdf.]

  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, doi:10.1175/2009JTECHA1280.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, W. H., Winker D. M. , Vaughan M. A. , Powell K. A. , Lucker P. L. , and Weimer C. , 2009: CALIPSO lidar description and performance assessment. J. Atmos. Oceanic Technol., 26, 12141228, doi:10.1175/2009JTECHA1223.1.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, S., and Okamoto H. , 2001: Analysis of the enhancement of backscattering by nonspherical particles with flat surfaces. Appl. Opt., 40, 61216129.

    • Search Google Scholar
    • Export Citation
  • King, M. D., Platnick S. , Yang P. , Arnold G. T. , Gray M. A. , Riedi J. C. , Ackerman S. A. , and Liou K.-N. , 2004: Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21, 857875, doi:10.1175/1520-0426(2004)021<0857:RSOLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mace, G., 2007: Level 2 GEOPROF product process description and interface control document algorithm version 5.3. Colorado State University, 44 pp. [Available online at http://www.cloudsat.cira.colostate.edu/icd/2b-geoprof/2b-geoprof_pdicd_5.3.doc.]

  • Marchand, R., Mace G. G. , Ackerman T. , and Stephens G. , 2008: Hydrometeor detection using Cloudsat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Marti, J., and Mauersberger K. , 1993: A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K. Geophys. Res. Lett., 20, 363366, doi:10.1029/93GL00105.

    • Search Google Scholar
    • Export Citation
  • McGill, M. J., Vaughan M. A. , Trepte C. R. , Hart W. D. , Hlavka D. L. , Winker D. M. , and Kuehn R. , 2007: Airborne validation of spatial properties measured by the CALIPSO lidar. J. Geophys. Res., 112, D20201, doi:10.1029/2007JD008768.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and Stephens G. L. , 2001: CloudSat instrument requirements as determined from ECMWF forecasts of global cloudiness. J. Geophys. Res., 106, 17 71317 733, doi:10.1029/2000JD900645.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Gettelman A. , 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Noel, V., and Sassen K. , 2005: Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations. J. Appl. Meteor., 44, 653664, doi:10.1175/JAM2223.1.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., and Coauthors, 2007: Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai. J. Geophys. Res., 112, D08216, doi:10.1029/2006JD007628.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., and Coauthors, 2008: Vertical cloud properties in the tropical western Pacific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar. J. Geophys. Res., 113, D24213, doi:10.1029/2008JD009812.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., Sato K. , and Hagihara Y. , 2010: Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals. J. Geophys. Res., 115, D22209, doi:10.1029/2009JD013383.

    • Search Google Scholar
    • Export Citation
  • Ovarlez, J., van Velthoven P. , Sachse G. , Vay S. , Schlager H. , and Ovarlez H. , 2000: Comparison of water vapor measurements from POLINAT 2 with ECMWF analyses in high-humidity conditions. J. Geophys. Res., 105, 37373744, doi:10.1029/1999JD900954.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., Scott S. C. , and Dilley A. C. , 1987: Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus. J. Atmos. Sci., 44, 729747, doi:10.1175/1520-0469(1987)044<0729:RSOHCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Klett J. D. , 1997: Microphysics of Clouds and Precipitation. Oxford University Press, 914 pp.

  • Rädel, G., and Shine K. P. , 2010: Validating ECMWF forecasts for the occurrence of ice supersaturation using visual observations of persistent contrails and radiosonde measurements over England. Quart. J. Roy. Meteor. Soc., 136, 17231732, doi:10.1002/qj.670.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Tokay A. , 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48, 10051023, doi:10.1175/1520-0469(1991)048<1005:AEFTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riedi, J., and Coauthors, 2010: Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmos. Chem. Phys., 10, 11 85111 865, doi:10.5194/acp-10-11851-2010.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and Yau M. K. , 1989: A Short Course in Cloud Physics. Elsevier, 290 pp.

  • Rossow, W. B., and Zhang Y. , 2010: Evaluation of a statistical model of cloud vertical structure using combined CloudSat and CALIPSO cloud layer profiles. J. Climate, 23, 66416653, doi:10.1175/2010JCLI3734.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Liou K.-N. , 1979: Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: Angular scattering patterns. J. Atmos. Sci., 36, 838851, doi:10.1175/1520-0469(1979)036<0838:SOPLLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Zhu J. , 2009: A global survey of CALIPSO linear depolarization ratios in ice clouds: Initial findings. J. Geophys. Res., 114, D00H07, doi:10.1029/2009JD012279.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., Matrosov S. Y. , and Uttal T. , 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, doi:10.1175/JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The Cloudsat Mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and Liou K.-N. , 1989: Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium. J. Atmos. Sci., 46, 2036, doi:10.1175/1520-0469(1989)046<0020:SRTICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., Liou K.-N. , and Minnis P. , 1992: The effect of small ice crystals on cirrus infrared radiative properties. J. Atmos. Sci., 49, 14871493, doi:10.1175/1520-0469(1992)049<1487:TEOSIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., Gierens K. , and Rädel G. , 2007: Ice supersaturation in the ECMWF integrated forecast system. Quart. J. Roy. Meteor. Soc., 133, 5363, doi:10.1002/qj.14.

    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113126, doi:10.1007/s00382-006-0127-7.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., Winker D. M. , and Powell K. A. , 2005: CALIOP Algorithm Theoretical Basis Document: Part 2; Feature detection and layer properties algorithms. Release 1.01, NASA Langley Research Center Doc. PC-SCI-202 Part 2, 87 pp. [Available online at http://calipsovalidation.hamptonu.edu/PC-SCI-202_Part2_rev1x01.pdf.]

  • Wang, X., Li W. , Zhu Y. , and Zhao B. , 2013: Improved cloud mask algorithm for FY-3A/VIRR data over the northwest region of China. Atmos. Meas. Tech., 6, 549563, doi:10.5194/amt-6-549-2013.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2005: Impact of cirrus crystal shape on solar spectral irradiance: A case study for subtropical cirrus. J. Geophys. Res., 110, D03202, doi:10.1029/2004JD005294.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., 2008: The fall speeds of sub-100 μm ice crystals. Quart. J. Roy. Meteor. Soc., 134, 12431251, doi:10.1002/qj.290.

  • Wilson, D. R., and Ballard S. P. , 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636, doi:10.1002/qj.49712555707.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., Hostetler C. A. , Vaughan M. A. , and Omar A. H. , 2006: CALIOP Algorithm Theoretical Basis Document: CALIOP instrument, and algorithms overview. Release 2.0, NASA Langley Research Center Doc. PC-SCI-201 Part 1, 29 pp.

  • Winker, D. M., Hunt W. H. , and McGill M. J. , 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2003: Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 11391157, doi:10.1016/S0022-4073(02)00346-1.

    • Search Google Scholar
    • Export Citation
  • Yoshida, R., Okamoto H. , Hagihara Y. , and Ishimoto H. , 2010: Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization. J. Geophys. Res.,115, D00H32, doi:10.1029/2009JD012334.

  • Young, S. A., Platt C. M. R. , Austin R. T. , and Patterson G. R. , 2000: Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS. J. Appl. Meteor., 39, 135153, doi:10.1175/1520-0450(2000)039<0135:OPAPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, S., Riedi J. , Parol F. , Cornet C. , and Thieuleux F. , 2013: An assessment of cloud top thermodynamic phase products obtained from A-Train passive and active sensors. Atmos. Meas. Tech. Discuss., 6, 83718411, doi:10.5194/amtd-6-8371-2013.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., Yang P. , Dessler A. E. , Hu Y. , and Baum B. A. , 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations. J. Appl. Meteor. Climatol., 51, 14261439, doi:10.1175/JAMC-D-11-0265.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., Yang P. , Dessler A. E. , and Liang F. , 2013: Statistical properties of horizontally oriented plates in optically thick clouds from satellite observations. IEEE Geosci. Remote Sens. Lett., 10, 986–990, doi:10.1109/LGRS.2012.2227451.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 78 9
PDF Downloads 194 31 7