Volumetric Lidar Scanning of Wind Turbine Wakes under Convective and Neutral Atmospheric Stability Regimes

Giacomo Valerio Iungo Wind Engineering and Renewable Energy Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Giacomo Valerio Iungo in
Current site
Google Scholar
PubMed
Close
and
Fernando Porté-Agel Wind Engineering and Renewable Energy Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Fernando Porté-Agel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Optimization of a wind farm’s layout is a strategic task to reduce wake effects on downstream turbines, thus maximizing wind power harvesting. However, downstream evolution and recovery of each wind turbine wake are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as the vertical profiles of the mean wind velocity and the turbulence intensity, which are in turn affected by the ABL thermal stability. Therefore, the characterization of the variability of wind turbine wakes under different ABL stability regimes becomes fundamental to better predict wind power harvesting and to improve wind farm efficiency. To this aim, wind velocity measurements of the wake produced by a 2-MW Enercon E-70 wind turbine were performed with three scanning Doppler wind lidars. One lidar was devoted to the characterization of the incoming wind—in particular, wind velocity, shear, and turbulence intensity at the height of the rotor disc. The other two lidars performed volumetric scans of the wind turbine wake under different atmospheric conditions. Through the evaluation of the minimum wake velocity deficit as a function of the downstream distance, it is shown that the ABL stability regime has a significant effect on the wake evolution; in particular, the wake recovers faster under convective conditions. This result suggests that atmospheric inflow conditions, and particularly thermal stability, should be considered for improved wake models and predictions of wind power harvesting.

Corresponding author address: F. Porté-Agel, Wind Engineering and Renewable Energy Laboratory, École Polytechnique Fédérale de Lausanne, GR B2 391, Station 2, CH-1015 Lausanne, Switzerland. E-mail: fernando.porte-agel@epfl.ch

Abstract

Optimization of a wind farm’s layout is a strategic task to reduce wake effects on downstream turbines, thus maximizing wind power harvesting. However, downstream evolution and recovery of each wind turbine wake are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as the vertical profiles of the mean wind velocity and the turbulence intensity, which are in turn affected by the ABL thermal stability. Therefore, the characterization of the variability of wind turbine wakes under different ABL stability regimes becomes fundamental to better predict wind power harvesting and to improve wind farm efficiency. To this aim, wind velocity measurements of the wake produced by a 2-MW Enercon E-70 wind turbine were performed with three scanning Doppler wind lidars. One lidar was devoted to the characterization of the incoming wind—in particular, wind velocity, shear, and turbulence intensity at the height of the rotor disc. The other two lidars performed volumetric scans of the wind turbine wake under different atmospheric conditions. Through the evaluation of the minimum wake velocity deficit as a function of the downstream distance, it is shown that the ABL stability regime has a significant effect on the wake evolution; in particular, the wake recovers faster under convective conditions. This result suggests that atmospheric inflow conditions, and particularly thermal stability, should be considered for improved wake models and predictions of wind power harvesting.

Corresponding author address: F. Porté-Agel, Wind Engineering and Renewable Energy Laboratory, École Polytechnique Fédérale de Lausanne, GR B2 391, Station 2, CH-1015 Lausanne, Switzerland. E-mail: fernando.porte-agel@epfl.ch
Save
  • Aitken, M. L., Banta R. M. , Pichugina Y. L. , and Lundquist J. K. , 2014: Quantifying wind turbine wake characteristics from scanning remote sensor data. J. Atmos. Oceanic Technol., 31, 765787, doi:10.1175/JTECH-D-13-00104.1.

    • Search Google Scholar
    • Export Citation
  • Baker, R., and Walker S. , 1984: Wake measurements behind a large horizontal axis wind turbine generator. Sol. Energy, 33, 512, doi:10.1016/0038-092X(84)90110-5.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and Coauthors, 2010: Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Oceanic Technol., 27, 13021317, doi:10.1175/2010JTECHA1398.1.

    • Search Google Scholar
    • Export Citation
  • Bastankhah, M., and Porté-Agel F. , 2014: A new analytical model for wind-turbine wakes. Renewable Energy, 70, 116123, doi:10.1016/j.renene.2014.01.002.

    • Search Google Scholar
    • Export Citation
  • Basu, S., Porté-Agel F. , Foufoula-Georgiou E. , Vinuesa J.-F. , and Pahlow M. , 2006: Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor., 119, 473500, doi:10.1007/s10546-005-9036-2.

    • Search Google Scholar
    • Export Citation
  • Bingöl, F., Mann J. , and Larsen G. C. , 2010: Light detection and ranging measurements of wake dynamics. Part I: One-dimensional scanning. Wind Energy, 13, 5161.

    • Search Google Scholar
    • Export Citation
  • Carbajo-Fuertes, F., Iungo G. V. , and Porté-Agel F. , 2014: 3D turbulence measurements using three synchronous wind lidars: Validation against sonic anemometry. J. Atmos. Oceanic Technol., 31, 1549–1556, doi:10.1175/JTECH-D-13-00206.1.

    • Search Google Scholar
    • Export Citation
  • Chan, P. W., and Shao A. M. , 2007: Depiction of complex airflow near Hong Kong International Airport using a Doppler lidar with a two-dimensional wind retrieval technique. Meteor. Z., 16, 491504, doi:10.1127/0941-2948/2007/0220.

    • Search Google Scholar
    • Export Citation
  • Crespo, A., and Hernández J. , 1986: A numerical model of wind turbine wakes and wind farms. Proceedings: EWEC ’86; European Wind Energy Association Conference and Exhibition, W. Palz and E. Sesto, Eds., Vol. 2, A. Raguzzi, Bookshop for Scientific Publications, 111–115.

  • Crespo, A., Hernández J. , and Frandsen S. , 1999: Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy, 2, 124, doi:10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7.

    • Search Google Scholar
    • Export Citation
  • Delaunay, B., 1934: Sur la sphère vide. Izv. Akad. Nauk SSSR Otd. Mat. Estestv. Nauk, 7, 793800.

  • Elliott, D. L., and Cadogan J. B. , 1990: Effects of wind shear and turbulence on wind turbine power curves. Proc. European Community Wind Energy Conf. and Exhibition, Madrid, Spain, EWEA, 10–14.

  • Emeis, S., Harris M. , and Banta R. , 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteor. Z., 16, 337347, doi:10.1127/0941-2948/2007/0225.

    • Search Google Scholar
    • Export Citation
  • Gottschall, J., and Peinke J. , 2008: How to improve the estimation of power curves for wind turbines. Environ. Res. Lett., 3, 015005, doi:10.1088/1748-9326/3/1/015005.

    • Search Google Scholar
    • Export Citation
  • Högstrom, U., Asimakopoulos D. N. , Kambezidis H. , Helmis C. G. , and Smedman A. , 1988: A field study of the wake behind a 2 MW wind turbine. Atmos. Environ., 22, 803820, doi:10.1016/0004-6981(88)90020-0.

    • Search Google Scholar
    • Export Citation
  • Iungo, G. V., and Porté-Agel F. , 2013: Measurement procedures for characterization of wind turbine wakes with scanning Doppler wind LiDARs. Adv. Sci. Res., 10, 7175, doi:10.5194/asr-10-71-2013.

    • Search Google Scholar
    • Export Citation
  • Iungo, G. V., Viola F. , Camarri S. , Porté-Agel F. , and Gallaire F. , 2013a: Linear stability analysis of wind turbine wakes performed on wind tunnel measurements. J. Fluid Mech., 737, 499526, doi:10.1017/jfm.2013.569.

    • Search Google Scholar
    • Export Citation
  • Iungo, G. V., Wu Y.-T. , and Porté-Agel F. , 2013b: Field measurements of wind turbine wakes with lidars. J. Atmos. Oceanic Technol., 30, 274287, doi:10.1175/JTECH-D-12-00051.1.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., Eversole R. A. , Lenschow D. H. , Stankov B. B. , Kahn P. H. , and Businger J. A. , 1982: Spectral characteristics of the convective boundary layer over uneven terrain. J. Atmos. Sci., 39, 10981114.

    • Search Google Scholar
    • Export Citation
  • Käsler, Y., Rahm S. , Simmet R. , and Kühn M. , 2010: Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar. J. Atmos. Oceanic Technol., 27, 15291532, doi:10.1175/2010JTECHA1483.1.

    • Search Google Scholar
    • Export Citation
  • Kongara, S., Calhoun R. , Choukulkar A. , and Boldi M. , 2012: Velocity retrieval for coherent Doppler lidar. Int. J. Remote Sens., 33, 35963613, doi:10.1080/01431161.2011.631948.

    • Search Google Scholar
    • Export Citation
  • Larsen, S. E., Gryning S. E. , Jensen N. O. , Jørgensen H. E. , and Mann J. , 2007: Mean wind and turbulence in the atmospheric boundary layer above the surface layer. Wind Energy: Proceedings of the Euromech Colloquium, J. Peinke, P. Schaumann, and S. Barth, Eds., Springer, 2125.

  • Lin, C., Xia Q. , and Calhoun R. , 2008: Retrieval of urban boundary layer structures from Doppler lidar data. Part II: Proper orthogonal decomposition. J. Atmos. Sci., 65, 2142, doi:10.1175/2007JAS2329.1.

    • Search Google Scholar
    • Export Citation
  • Luken, E., Talmon A. , and Vermeulen P. E. J. , 1986: Evaluation of two mathematical wind turbine wake models in various types of flow. TNO-MT Tech. Rep. 86-07, 24 pp.

  • Machefaux, E., Troldborg N. , Larsen G. C. , Mann J. , and Madsen H. A. , 2012: Experimental and numerical study of wake to wake interaction in wind farms. Proc. European Wind Energy Conf. and Exhibition, Copenhagen, Denmark, EWEA, 10 pp. [Available online at http://orbit.dtu.dk/en/publications/experimental-and-numerical-study-of-wake-to-wake-interaction-in-wind-farms(f10f9a8a-b95b-441f-acb5-fe0c38e22215).pdf?nofollow=true&rendering=long.]

  • Magnusson, M., and Smedman A.-S. , 1996: A practical method to estimate wind turbine wake characteristics from turbine data and routine wind measurements. Wind Eng., 20, 7392.

    • Search Google Scholar
    • Export Citation
  • Magnusson, M., and Smedman A.-S. , 1999: Air flow behind wind turbines. J. Wind Eng. Ind. Aerodyn., 80, 169189, doi:10.1016/S0167-6105(98)00126-3.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Motta, M., Barthelmie R. J. , and Vølund P. , 2005: The influence of non-logarithmic wind speed profiles on potential power output at Danish offshore sites. Wind Energy, 8, 219236.

    • Search Google Scholar
    • Export Citation
  • Newsom, R., Ligon D. , Calhoun R. , Heap R. , Cregan E. , and Pricevac M. , 2005: Retrieval of microscale wind and temperature fields from single- and dual-Doppler lidar data. J. Appl. Meteor., 44, 13241345, doi:10.1175/JAM2280.1.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1971: Turbulence in an atmosphere with a non-uniform temperature. Bound.-Layer Meteor., 2, 729, doi:10.1007/BF00718085.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., Tennekes H. , Lenschow D. H. , and Wyngaard J. C. , 1977: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor., 11, 355361, doi:10.1007/BF02186086.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., Wu Y.-T. , Lu H. , and Conzemius R. , 2011: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerodyn., 99, 154168, doi:10.1016/j.jweia.2011.01.011.

    • Search Google Scholar
    • Export Citation
  • Rareshide, E., Tindal A. , Johnson C. , Graves A. , Simpson E. , Bleeg J. , Harris T. , and Schoborg D. , 2009: Effects of complex wind regimes on turbine performance. Proc. Windpower 2009, Chicago, IL, AWEA, 15 pp.

  • Rhodes, M. E., and Lundquist J. K. , 2013: The effect of wind-turbine wakes on summertime US Midwest atmospheric wind profiles as observed with ground-based Doppler lidar. Bound.-Layer Meteor., 149, 85103, doi:10.1007/s10546-013-9834-x.

    • Search Google Scholar
    • Export Citation
  • Smalikho, I., Banakh V. , Pichugina Y. , Brewer W. , Banta R. , Lundquist J. , and Kelley N. , 2013: Lidar investigation of atmosphere effect on a wind turbine wake. J. Atmos. Oceanic Technol., 30, 25542570, doi:10.1175/JTECH-D-12-00108.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. M., Barthelmie R. J. , and Pryor S. C. , 2013: In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles. Environ. Res. Lett.,8, 034006, doi:10.1088/1748-9326/8/3/034006.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Kluwer Academic, 670 pp.

  • Sumner, J., and Masson C. , 2006: Influence of atmospheric stability on wind turbine power performance curves. J. Sol. Energy Eng., 128, 531538, doi:10.1115/1.2347714.

    • Search Google Scholar
    • Export Citation
  • Takeuchi, K., 1961: On the structure of the turbulent field in the surface boundary layer. J. Meteor. Soc. Japan, 39, 346364.

  • Trujillo, J.-J., Bingöl F. , Larsen G. C. , Mann J. , and Kühn M. , 2011: Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning. Wind Energy, 14, 6175, doi:10.1002/we.402.

    • Search Google Scholar
    • Export Citation
  • van der Berg, G. P., 2008: Wind turbine power and sound in relation to atmospheric stability. Wind Energy, 11, 151169, doi:10.1002/we.240.

    • Search Google Scholar
    • Export Citation
  • Vermeer, L. J., Sørensen J. N. , and Crespo A. , 2003: Wind turbine wake aerodynamics. Prog. Aerosp. Sci., 39, 467510, doi:10.1016/S0376-0421(03)00078-2.

    • Search Google Scholar
    • Export Citation
  • Viola, F., Iungo G. V. , Camarri S. , Porté-Agel F. , and Gallaire F. , 2014: Prediction of the hub vortex instability in a wind turbine wake: Stability analysis with eddy-viscosity models calibrated on wind tunnel data. J. Fluid Mech., 750, R1, doi:10.1017/jfm.2014.263.

    • Search Google Scholar
    • Export Citation
  • Wharton, S., and Lundquist J. K. , 2010: Atmospheric stability impacts on power curves of tall wind turbines—An analysis of a West Coast North American wind farm. LLNL Tech. Rep. LLNL-TR-424425, 73 pp. [Available online at https://e-reports-ext.llnl.gov/pdf/387609.pdf.]

  • Wharton, S., and Lundquist J. K. , 2012: Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy, 15, 525546, doi:10.1002/we.483.

    • Search Google Scholar
    • Export Citation
  • Wiser, R., and Bollinger M. , 2012: 2011 wind technologies market report. Lawrence Berkeley National Laboratory Tech. Rep., 81 pp. [Available online at http://emp.lbl.gov/publications/2011-wind-technologies-market-report.]

  • Wu, Y.-T., and Porté-Agel F. , 2011: Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations. Bound.-Layer Meteor., 138, 345366, doi:10.1007/s10546-010-9569-x.

    • Search Google Scholar
    • Export Citation
  • Wu, Y.-T., and Porté-Agel F. , 2012: Atmospheric turbulence effects on wind-turbine wakes: An LES study. Energies, 5, 53405362, doi:10.3390/en5125340.

    • Search Google Scholar
    • Export Citation
  • Xia, Q., Lin C. , Calhoun R. , and Newsom R. , 2008: Retrieval of urban boundary layer structures from Doppler lidar data. Part I: Accuracy assessment. J. Atmos. Sci., 65, 320, doi:10.1175/2007JAS2328.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Markfort C. D. , and Porté-Agel F. , 2013: Wind-turbine wakes in a convective boundary layer: A wind-tunnel study. Bound.-Layer Meteor., 146, 161179, doi:10.1007/s10546-012-9751-4.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., Tian Y. , Baidya Roy S. , Thorncroft C. , Bosart L. F. , and Hu Y. , 2012: Impacts of wind farms on land surface temperature. Nat. Climate Change, 2, 539543, doi:10.1038/nclimate1505.

    • Search Google Scholar
    • Export Citation