Land Contamination Correction for Passive Microwave Radiometer Data: Demonstration of Wind Retrieval in the Great Lakes Using SSM/I

John Xun Yang Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by John Xun Yang in
Current site
Google Scholar
PubMed
Close
,
Darren S. Mckague Space Physics Research Laboratory, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Darren S. Mckague in
Current site
Google Scholar
PubMed
Close
, and
Christopher S. Ruf Space Physics Research Laboratory, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Christopher S. Ruf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Passive microwave radiometer data over the ocean have been widely used, but data near coastlines or over lakes often cannot be used because of the large footprint with mixed signals from both land and water. For example, current standard Special Sensor Microwave Imager (SSM/I) products, including wind, water vapor, and precipitation, are typically unavailable within about 100 km of any coastline. This paper presents methods of correcting land-contaminated radiometer data in order to extract the coastal information. The land contamination signals are estimated, and then removed, using a representative antenna pattern convolved with a high-resolution land–water mask. This method is demonstrated using SSM/I data over the Great Lakes and validated with simulated data and buoy measurements. The land contamination is significantly reduced, and the wind speed retrieval is improved. This method is not restricted to SSM/I and wind retrievals alone; it can be applied more generally to microwave radiometer measurements in coastal regions for other retrieval purposes.

Denotes Open Access content.

Corresponding author address: John Xun Yang, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143. E-mail: johnxun@umich.edu

Abstract

Passive microwave radiometer data over the ocean have been widely used, but data near coastlines or over lakes often cannot be used because of the large footprint with mixed signals from both land and water. For example, current standard Special Sensor Microwave Imager (SSM/I) products, including wind, water vapor, and precipitation, are typically unavailable within about 100 km of any coastline. This paper presents methods of correcting land-contaminated radiometer data in order to extract the coastal information. The land contamination signals are estimated, and then removed, using a representative antenna pattern convolved with a high-resolution land–water mask. This method is demonstrated using SSM/I data over the Great Lakes and validated with simulated data and buoy measurements. The land contamination is significantly reduced, and the wind speed retrieval is improved. This method is not restricted to SSM/I and wind retrievals alone; it can be applied more generally to microwave radiometer measurements in coastal regions for other retrieval purposes.

Denotes Open Access content.

Corresponding author address: John Xun Yang, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143. E-mail: johnxun@umich.edu
Save
  • Bellerby, T., Taberner M. , Wilmshurst A. , Beaumont M. , Barrett E. , Scott J. , and Durbin C. , 1998: Retrieval of land and sea brightness temperatures from mixed coastal pixels in passive microwave data. IEEE Trans. Geosci. Remote Sens., 36, 18441851, doi:10.1109/36.729355.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 1999: On the use of SSM/I measurements in coastal regions. J. Atmos. Oceanic Technol., 16, 417431, doi:10.1175/1520-0426(1999)016<0417:OTUOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, W., Sapiano M. R. P. , Horsman J. , and Kummerow C. , 2013: Improved geolocation and Earth incidence angle information for a fundamental climate data record of the SSM/I sensors. IEEE Trans. Geosci. Remote Sens., 51, 1504–1513, doi:10.1109/TGRS.2012.2199761.

    • Search Google Scholar
    • Export Citation
  • Carroll, M. L., Townshend J. R. , DiMiceli C. M. , Noojipady P. , and Sohlberg R. A. , 2009: A new global raster water mask at 250 m resolution. Int. J. Digital Earth,2, 291–308, doi:10.1080/17538940902951401.

  • Colton, M. C., and Poe G. A. , 1999: Intersensor calibration of DMSP SSM/I’s: F-8 to F-14, 1987-1997. IEEE Trans. Geosci. Remote Sens., 37, 418439, doi:10.1109/36.739079.

    • Search Google Scholar
    • Export Citation
  • Desportes, C., Obligis E. , and Eymard L. , 2007: On the wet tropospheric correction for altimetry in coastal regions. IEEE Trans. Geosci. Remote Sens., 45, 21392149, doi:10.1109/TGRS.2006.888967.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., Wood E. F. , and Lindau R. , 1999: The impact of the SSM/I antenna gain function on land surface parameter retrieval. Geophys. Res. Lett., 26, 34813484, doi:10.1029/1999GL010492.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G., 2006: A parametric optimal estimation retrieval of the non-precipitating parameters over the global oceans. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 87 pp.

  • Galindo-Israel, V., and Mittra R. , 1977: A new series representation for the radiation integral with application to reflector antennas. IEEE Trans. Antennas Propag.,25, 631641, doi:10.1109/TAP.1977.1141657.

    • Search Google Scholar
    • Export Citation
  • Goodberlet, M. A., Swift C. T. , and Wilkerson J. C. , 1989: Remote sensing of ocean surface winds with the Special Sensor Microwave Imager. J. Geophys. Res., 94, 14 54714 555, doi:10.1029/JC094iC10p14547.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., 1971: Passive microwave measurements of sea surface roughness. IEEE Trans. Geosci. Electron., 9, 165169, doi:10.1109/TGE.1971.271489.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., Peirce J. L. , and Poe G. A. , 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790, doi:10.1109/36.58964.

    • Search Google Scholar
    • Export Citation
  • Huber, P. J., and Ronchetti E. M. , 2009: Robust Statistics. 2nd ed. Wiley Series in Probability and Statistics, John Wiley, 380 pp.

  • Hung, C. C., and Mittra R. , 1983: Secondary pattern and focal region distribution of reflector antennas under wide-angle scanning. IEEE Trans. Antennas Propag., 31, 756763, doi:10.1109/TAP.1983.1143141.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, M., 2002: Iteratively reweighted least squares. Encyclopedia of Environmetrics, A. H. El-Shaarawi and W. W. Piegorsch, Eds., John Wiley & Sons, Ltd., 1084–1088.

  • Kroodsma, R. A., McKague D. S. , and Ruf C. S. , 2012: Inter-calibration of microwave radiometers using the vicarious cold calibration double difference method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 10061013, doi:10.1109/JSTARS.2012.2195773.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., Hufford G. A. , and Manabe T. , 1991: A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millimeter Waves, 12, 659675, doi:10.1007/BF01008897.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., Rosenkranz P. W. , and Hufford G. A. , 1992: Atmospheric 60-GHz oxygen spectrum: New laboratory measurements and line parameters. J. Quant. Spectrosc. Radiat. Transfer, 48, 629643, doi:10.1016/0022-4073(92)90127-P.

    • Search Google Scholar
    • Export Citation
  • Maaß, N., and Kaleschke L. , 2010: Improving passive microwave sea ice concentration algorithms for coastal areas: Applications to the Baltic Sea. Tellus,62A, 393410, doi:10.1111/j.1600-0870.2010.00452.x.

    • Search Google Scholar
    • Export Citation
  • Meindl, E. A., and Hamilton G. D. , 1992: Programs of the National Data Buoy Center. Bull. Amer. Meteor. Soc., 73, 985993, doi:10.1175/1520-0477(1992)073<0985:POTNDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., and Wentz F. J. , 2004: The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens., 42, 18361849, doi:10.1109/TGRS.2004.831888.

    • Search Google Scholar
    • Export Citation
  • Mittra, R., Rahmat-Samii Y. , Galindo-Israel V. , and Norman R. , 1979: An efficient technique for the computation of vector secondary patterns of offset paraboloid reflectors. IEEE Trans. Antennas Propag.,27, 294304, doi:10.1109/TAP.1979.1142086.

    • Search Google Scholar
    • Export Citation
  • Poe, G. A., and Conway R. W. , 1990: A study of the geolocation errors of the Special Sensor Microwave Imager (SSM/I). IEEE Trans. Geosci. Remote Sens., 28, 791799, doi:10.1109/36.58965.

    • Search Google Scholar
    • Export Citation
  • Rahmat-Samii, Y., and Galindo-Israel V. , 1980: Shaped reflector antenna analysis using the Jacobi-Bessel series. IEEE Trans. Antennas Propag., 28, 425435, doi:10.1109/TAP.1980.1142364.

    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 1993: Absorption of microwaves by atmospheric gases. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., John Wiley, 37–90.

  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33, 919928, doi:10.1029/98RS01182.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., Berg W. K. , McKague D. S. , and Kummerow C. D. , 2013: Toward an intercalibrated fundamental climate data record of the SSM/I sensors. IEEE Trans. Geosci. Remote Sens., 51, 14921503, doi:10.1109/TGRS.2012.2206601.

    • Search Google Scholar
    • Export Citation
  • Stogryn, A. P., 1972: The emissivity of sea foam at microwave frequencies. J. Geophys. Res., 77, 16581666, doi:10.1029/JC077i009p01658.

    • Search Google Scholar
    • Export Citation
  • Stogryn, A. P., Butler C. T. , and Bartolac T. J. , 1994: Ocean surface wind retrievals from Special Sensor Microwave Imager data with neural networks. J. Geophys. Res.,99, 981984, doi:10.1029/93JC03042.

    • Search Google Scholar
    • Export Citation
  • Street, J. O., Carroll R. J. , and Ruppert D. , 1988: A note on computing robust regression estimates via iteratively reweighted least squares. Amer. Stat., 42, 152154.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., and Long D. G. , 2014: Microwave Radar and Radiometric Remote Sensing. University of Michigan Press, 1016 pp.

  • Wilheit, T. T., 1979: A model for the microwave emissivity of the ocean’s surface as a function of wind speed. IEEE Trans. Geosci. Remote Sens., 17, 244249, doi:10.1109/TGE.1979.294653.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 359 114 29
PDF Downloads 180 67 2