Abstract
The spatial positions of individual aerosol particles, cloud droplets, or raindrops can be modeled as a point processes in three dimensions. Characterization of three-dimensional point processes often involves the calculation or estimation of the radial distribution function (RDF) and/or the pair-correlation function (PCF) for the system. Sampling these three-dimensional systems is often impractical, however, and, consequently, these three-dimensional systems are directly measured by probing the system along a one-dimensional transect through the volume (e.g., an aircraft-mounted cloud probe measuring a thin horizontal “skewer” through a cloud). The measured RDF and PCF of these one-dimensional transects are related to (but not, in general, equal to) the RDF/PCF of the intrinsic three-dimensional systems from which the sample was taken. Previous work examined the formal mathematical relationship between the statistics of the intrinsic three-dimensional system and the one-dimensional transect; this study extends the previous work within the context of realistic sampling variability. Natural sampling variability is found to constrain substantially the usefulness of applying previous theoretical relationships. Implications for future sampling strategies are discussed.