The Air–Sea Interaction Profiler (ASIP): An Autonomous Upwardly Rising Profiler for Microstructure Measurements in the Upper Ocean

Brian Ward * School of Physics, and Ryan Institute, National University of Ireland, Galway, Galway, Ireland

Search for other papers by Brian Ward in
Current site
Google Scholar
PubMed
Close
,
Tim Fristedt Swedish Defence Research Agency (FOI), Stockholm, Sweden

Search for other papers by Tim Fristedt in
Current site
Google Scholar
PubMed
Close
,
Adrian H. Callaghan Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Adrian H. Callaghan in
Current site
Google Scholar
PubMed
Close
,
Graig Sutherland * School of Physics, and Ryan Institute, National University of Ireland, Galway, Galway, Ireland

Search for other papers by Graig Sutherland in
Current site
Google Scholar
PubMed
Close
,
Xavier Sanchez Department of Physics, University of Gerona, Campus Montilivi, Gerona, Catalonia, Spain

Search for other papers by Xavier Sanchez in
Current site
Google Scholar
PubMed
Close
,
Jérôme Vialard ** Sorbonne Universités, UPMC, Universite Paris 06, CNRS/IRD/MNHN, LOCEAN Laboratory, IPSL, Paris, France

Search for other papers by Jérôme Vialard in
Current site
Google Scholar
PubMed
Close
, and
Anneke ten Doeschate * School of Physics, and Ryan Institute, National University of Ireland, Galway, Galway, Ireland

Search for other papers by Anneke ten Doeschate in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The upper few meters of the ocean form a critical layer for air–sea interaction, but because of observational challenges this region is undersampled. However, the physical processes controlling momentum transfer, gas exchange, and heat transfer are all concentrated in the uppermost region of the ocean. To study this region, the Air–Sea Interaction Profiler (ASIP) was developed. This is an autonomous microstructure vertical profiling instrument that provides data from a maximum depth of 100 m to the ocean surface and allows measurements to be performed in an undisturbed environment. The core sensor package on ASIP includes shear probes, microstructure and CTD-quality temperature and conductivity sensors, a photosynthetically active radiation (PAR) sensor, and an oxygen optode providing a repeated high-resolution dataset immediately below the air–sea interface. Autonomous profiling is accomplished with thrusters that submerge the positively buoyant instrument. Once the desired depth is reached, ASIP ascends through the water column acquiring data. At the surface, ASIP acquires its position and transmits this over the Iridium satellite network. ASIP is then placed in a low-power mode for a specified period, whereupon it repeats the profile cycle. Two-way communication over the Iridium network allows mission parameters to be changed in real time. ASIP has been used to study several scientific questions, such as the impact of diurnal warming on atmospheric processes, turbulence scaling in the upper ocean, parameterizing air–sea gas exchange, salinity gradients in the ocean surface boundary layer (OSBL), and consequences for remote sensing.

Current affiliation: Department of Mathematics, University of Oslo, and Norwegian Meteorological Institute, Oslo, Norway.

Corresponding author address: Brian Ward, School of Physics, National University of Ireland, Galway, University Road, Galway, Ireland. E-mail: bward@nuigalway.ie

Abstract

The upper few meters of the ocean form a critical layer for air–sea interaction, but because of observational challenges this region is undersampled. However, the physical processes controlling momentum transfer, gas exchange, and heat transfer are all concentrated in the uppermost region of the ocean. To study this region, the Air–Sea Interaction Profiler (ASIP) was developed. This is an autonomous microstructure vertical profiling instrument that provides data from a maximum depth of 100 m to the ocean surface and allows measurements to be performed in an undisturbed environment. The core sensor package on ASIP includes shear probes, microstructure and CTD-quality temperature and conductivity sensors, a photosynthetically active radiation (PAR) sensor, and an oxygen optode providing a repeated high-resolution dataset immediately below the air–sea interface. Autonomous profiling is accomplished with thrusters that submerge the positively buoyant instrument. Once the desired depth is reached, ASIP ascends through the water column acquiring data. At the surface, ASIP acquires its position and transmits this over the Iridium satellite network. ASIP is then placed in a low-power mode for a specified period, whereupon it repeats the profile cycle. Two-way communication over the Iridium network allows mission parameters to be changed in real time. ASIP has been used to study several scientific questions, such as the impact of diurnal warming on atmospheric processes, turbulence scaling in the upper ocean, parameterizing air–sea gas exchange, salinity gradients in the ocean surface boundary layer (OSBL), and consequences for remote sensing.

Current affiliation: Department of Mathematics, University of Oslo, and Norwegian Meteorological Institute, Oslo, Norway.

Corresponding author address: Brian Ward, School of Physics, National University of Ireland, Galway, University Road, Galway, Ireland. E-mail: bward@nuigalway.ie
Save
  • Agrawal, Y. C., and Williams A. J. III, 1999: Microstructure sensors dedicated to Dr. Robert W. Stewart, one of the fathers of modern observations of ocean turbulence. J. Atmos. Oceanic Technol., 16, 14651466, doi:10.1175/1520-0426(1999)016<1465:MSDTDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Agrawal, Y. C., Terray E. A. , Donelan M. A. , Hwang P. A. , Williams A. J. III, Drennan W. M. , Kahma K. K. , and Kitaigorodskii S. A. , 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, doi:10.1038/359219a0.

    • Search Google Scholar
    • Export Citation
  • Anis, A., and Moum J. N. , 1995: Surface wave–turbulence interactions: Scaling ϵ(z) near the sea surface. J. Phys. Oceanogr., 25, 20252045, doi:10.1175/1520-0485(1995)025<2025:SWISNT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., Takayabu Y. N. , Ushiyama T. , and Yoneyama K. , 2010: Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. Mon. Wea. Rev., 138, 24262433, doi:10.1175/2010MWR3249.1.

    • Search Google Scholar
    • Export Citation
  • Caldwell, D. R., and Dillon T. M. , 1981: An oceanic microstructure measuring system. Oregon State University, School of Oceanography Tech. Rep. 81-10, 168 pp.

  • Callaghan, A. H., Ward B. , and Vialard J. , 2014: Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean. Deep-Sea Res. I, doi:10.1016/j.dsr.2014.08.009, in press.

    • Search Google Scholar
    • Export Citation
  • Carter, G. D., and Imberger J. , 1986: Vertically rising microstructure profiler. J. Atmos. Oceanic Technol., 3, 462471, doi:10.1175/1520-0426(1986)003<0462:VRMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dillon, T., Richman J. , Hansen C. , and Pearson M. , 1981: Near-surface turbulence measurements in a lake. Nature, 290, 390392, doi:10.1038/290390a0.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Haus B. K. , Reul N. , Plant W. J. , Stiassnie M. , Graber H. C. , Brown O. B. , and Saltzman E. S. , 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Minnett P. J. , Gentemann C. , Nightingale T. J. , Barton I. J. , Ward B. , and Murray J. , 2002: Towards improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15, 353369, doi:10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Godfrey J. S. , Wick G. A. , Edson J. B. , and Young G. S. , 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, doi:10.1029/95JC03190.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., Joseph P. V. , and Joshi N. V. , 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, doi:10.1038/312141a0.

    • Search Google Scholar
    • Export Citation
  • Garau, B., Ruiz S. , Zhang W. G. , Pascual A. , Heslop E. , Kerfoot J. , and Tintore J. , 2011: Thermal lag correction on Slocum CTD glider data. J. Atmos. Oceanic Technol., 28, 10651071, doi:10.1175/JTECH-D-10-05030.1.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., and Minnett P. J. , 2008: Radiometric measurements of ocean surface thermal variability. J. Geophys. Res., 113, C08017, doi:10.1029/2007JC004540.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and Barnett T. P. , 1987: Sea surface temperature, surface wind divergence, and convection over the tropical oceans. Science, 238, 657659, doi:10.1126/science.238.4827.657.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1999: Uncertainties and limitations in measuring ϵ and χT. J. Atmos. Oceanic Technol., 16, 14831490, doi:10.1175/1520-0426(1999)016<1483:UALIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, B. A., and Fratantoni D. M. , 2014: AUV observations of the diurnal surface layer in the North Atlantic salinity maximum. J. Phys. Oceanogr., 44, 15951604, doi:10.1175/JPO-D-13-0140.1.

    • Search Google Scholar
    • Export Citation
  • Hu, C., Montgomery E. T. , Schmitt R. W. , and Muller-Karger F. E. , 2004: The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: Observation from space and S-PALACE floats. Deep-Sea Res., 51, 11511171, doi:10.1016/j.dsr2.2004.04.001.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2012: Ocean wave effects on the daily cycle in SST. J. Geophys. Res., 117, C00J32, doi:10.1029/2012JC007943

  • Kawai, Y., and Kawamura H. , 2002: Evaluation of the diurnal warming of sea surface temperature using satellite-derived marine meteorological data. J. Oceanogr., 58, 805814, doi:10.1023/A:1022867028876.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V., and Soloviev A. , 1990: Slippery near-surface layer of the ocean arising due to daytime solar heating. J. Phys. Oceanogr., 20, 617628, doi:10.1175/1520-0485(1990)020<0617:SNSLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorke, A., and Peeters F. , 2006: Toward a unified scaling relation for interfacial fluxes. J. Phys. Oceanogr., 36, 955961, doi:10.1175/JPO2903.1.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., Wolk F. , and Yamazaki H. , 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr., 58, 153174, doi:10.1023/A:1015837020019.

    • Search Google Scholar
    • Export Citation
  • Macoun, P., and Lueck R. , 2004: Modeling the spatial response of the airfoil shear probe using different sized probes. J. Atmos. Oceanic Technol., 21, 284297, doi:10.1175/1520-0426(2004)021<0284:MTSROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mammen, T. C., and von Bosse N. , 1990: STEP—A temperature profiler for measuring the oceanic thermal boundary layer at the ocean–air interface. J. Atmos. Oceanic Technol., 7, 312322, doi:10.1175/1520-0426(1990)007<0312:STPFMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masson, S., Terray P. , Madec G. , Luo J.-J. , Yamagata T. , and Takahashi K. , 2012: Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dyn., 39, 681707, doi:10.1007/s00382-011-1247-2.

    • Search Google Scholar
    • Export Citation
  • McManus, M. A., and Coauthors, 2003: Characteristics, distribution and persistence of thin layers over a 48 hour period. Mar. Ecol. Prog. Ser., 261, 1–19, doi:10.3354/meps261001.

    • Search Google Scholar
    • Export Citation
  • McNeil, C. L., and Merlivat L. , 1996: The warm oceanic surface layer: Implications for CO2 fluxes and surface gas measurements. Geophys. Res. Lett., 23, 35753578, doi:10.1029/96GL03426.

    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., and Ward B. , 2000: Measurements of near-surface ocean temperature variability—Consequences on the validation of AATSR on ENVISAT. Proc. ERS-ENVISAT Symp., Publ. ESA SP-461, Gothenburg, Sweden, European Space Agency. [Available online at https://earth.esa.int/pub/ESA_DOC/gothenburg/503minne.pdf.]

    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., Smith M. , and Ward B. , 2011: Measurements of the oceanic thermal skin effect. Deep-Sea Res. II, 58, 861868, doi:10.1016/j.dsr2.2010.10.024.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., Gregg M. C. , Lien R. C. , and Carr M. E. , 1995: Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmos. Oceanic Technol., 12,346366, doi:10.1175/1520-0426(1995)012<0346:COTKED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oakey, N., and Elliott J. , 1982: Dissipation within the surface mixed layer. J. Phys. Oceanogr., 12, 171185, doi:10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and Crawford W. R. , 1980: An airfoil probe for measuring velocity fluctuations in water. Air-Sea Interaction: Instruments and Methods, F. Dobson, L. House, and R. Davis, Eds., Plenum Press, 369–386.

  • Price, J. F., Weller R. A. , Bowers C. M. , and Briscoe M. G. , 1987: Diurnal response of sea surface temperature observed at the long-term upper ocean study (34°N, 70°W) in the Sargasso Sea. J. Geophys. Res., 92, 14 48014 490, doi:10.1029/JC092iC13p14480.

    • Search Google Scholar
    • Export Citation
  • Reul, N., Tenerelli J. , Boutin J. , Chapron B. , Paul F. , Brion E. , Gaillard F. , and Archer O. , 2012: Overview of the first SMOS sea surface salinity products. Part I: Quality assessment for the second half of 2010. IEEE Trans. Geosci. Remote Sens., 50, 16361647, doi:10.1109/TGRS.2012.2188408.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., Morisset S. , Boutin J. , and Martin N. , 2012: Rain-induced variability of near sea-surface T and S from drifter data. J. Geophys. Res., 117, C02032, doi:10.1029/2011JC007549.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Owens W. , 2000: The Argo project: Global ocean observations for understanding and prediction of climate variability. Oceanography, 13, 4550, doi:10.5670/oceanog.2000.33.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and Schlüssel P. , 1996: Evolution of cool skin and direct air–sea gas transfer coefficient during daytime. Bound.-Layer Meteor., 77, 4568, doi:10.1007/BF00121858.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and Lukas R. , 1997: Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep-Sea Res. I, 44, 10551076, doi:10.1016/S0967-0637(96)00124-0.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., Vershinsky N. V. , and Bezverchnii V. A. , 1988: Small-scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res., 35A, 18591874, doi:10.1016/0198-0149(88)90113-6.

    • Search Google Scholar
    • Export Citation
  • Stevens, C., and Smith M. , 2004: Temperature microstructure beneath surface gravity waves. J. Atmos. Oceanic Technol., 21, 17471757, doi:10.1175/JTECH1659.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. W., 1974: The air-sea momentum exchange. Bound.-Layer Meteor., 6, 151167, doi:10.1007/BF00232481.

  • Sutherland, G., Christensen K. H. , and Ward B. , 2013: Wave-turbulence scaling in the ocean mixed layer. Ocean Sci., 9, 597608, doi:10.5194/os-9-597-2013.

    • Search Google Scholar
    • Export Citation
  • Sutherland, G., Christensen K. H. , and Ward B. , 2014: Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer. J. Geophys. Res. Oceans, 119, 1899–1910, doi:10.1002/2013JC009537.

    • Search Google Scholar
    • Export Citation
  • Sweeney, C., Gnanadesikan A. , Griffies S. M. , Harrison M. J. , Rosati A. J. , and Samuels B. L. , 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35, 1103–1119, doi:10.1175/JPO2740.1.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2004: Recent developments in the study of ocean turbulence. Annu. Rev. Earth Planet. Sci., 32, 91109, doi:10.1146/annurev.earth.32.071603.152635.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., and Coauthors, 2009: Cirene: Air–sea interactions in the Seychelles–Chagos thermocline ridge region. Bull. Amer. Meteor. Soc., 90, 4561, doi:10.1175/2008BAMS2499.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Goodman L. , 2009: The evolution of a thin phytoplankton layer in strong turbulence. Cont. Shelf Res., 30, 104–118, doi:10.1016/j.csr.2009.08.006.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., Asher W. E. , Ho D. T. , Sweeney C. , and McGillis W. R. , 2009: Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci., 1, 213–244, doi:10.1146/annurev.marine.010908.163742.

    • Search Google Scholar
    • Export Citation
  • Ward, B., 2006: Near-surface ocean temperature. J. Geophys. Res., 111, C02005, doi:10.1029/2004JC002689.

  • Ward, B., Wanninkhof R. , Minnett P. J. , and Head M. J. , 2004: SkinDeEP: A profiling instrument for upper-decameter sea surface measurements. J. Atmos. Oceanic Technol., 21, 207222, doi:10.1175/1520-0426(2004)021<0207:SAPIFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., Clayson C. A. , and Curry J. A. , 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9, 17121730, doi:10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., and Osborn T. R. , 1990: Dissipation estimates for stratified turbulence. J. Geophys. Res., 95, 97399744, doi:10.1029/JC095iC06p09739.

    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., McGillis W. R. , Raymond P. A. , Edson J. B. , Hintsa E. J. , Zemmelink H. J. , Dacey J. W. H. , and Ho D. T. , 2007: Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys. Res. Lett., 34, L10601, doi:10.1029/2006GL028790.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Zhang X. , 2012: Ocean haline skin layer and turbulent surface convections. J. Geophys. Res., 117, C04017, doi:10.1029/2011JC007464.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1486 660 139
PDF Downloads 693 166 10