KuROS: A New Airborne Ku-Band Doppler Radar for Observation of Surfaces

Gérard Caudal Université de Versailles Saint-Quentin-en-Yvelines, Versailles, and Universite Paris 06, Paris, and CNRS/INSU, LATMOS-IPSL, Guyancourt, France

Search for other papers by Gérard Caudal in
Current site
Google Scholar
PubMed
Close
,
Danièle Hauser Université de Versailles Saint-Quentin-en-Yvelines, Versailles, and Universite Paris 06, Paris, and CNRS/INSU, LATMOS-IPSL, Guyancourt, France

Search for other papers by Danièle Hauser in
Current site
Google Scholar
PubMed
Close
,
René Valentin Université de Versailles Saint-Quentin-en-Yvelines, Versailles, and Universite Paris 06, Paris, and CNRS/INSU, LATMOS-IPSL, Guyancourt, France

Search for other papers by René Valentin in
Current site
Google Scholar
PubMed
Close
, and
Christophe Le Gac Université de Versailles Saint-Quentin-en-Yvelines, Versailles, and Universite Paris 06, Paris, and CNRS/INSU, LATMOS-IPSL, Guyancourt, France

Search for other papers by Christophe Le Gac in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents the new airborne Doppler radar Ku-Band Radar for Observation of Surfaces (KuROS), which provides measurements of the normalized radar cross section σ° and of the Doppler velocity over the sea. The system includes two antennas rotating around a vertical axis, although only the results from the lower incidence (14°) antenna are presented here. Also given are the first results from observations performed during two field campaigns held in 2013: the Hydrological Cycle in Mediterranean Experiment (HyMeX) and the Prévision Océanique, Turbidité, Ecoulements, Vagues et Sédimentologie (PROTEVS).

Sea wave directional spectra computed by the radar from tilt modulation of σ° are consistent with those given by the directional wave rider moored in the Mediterranean basin, both in terms of significant wave height Hs and main features of the wavenumber spectrum. As concerns the azimuthal distribution, two methods are tested to remove the 180° ambiguity of the radar-derived directional spectrum. The first method is based on the correlation between the modulations of σ° and Doppler velocity, which reflects the correlation between the sea surface slope and orbital velocity. The second method does not use the Doppler velocity but computes the cross spectrum between the modulations of σ° between two power profiles separated by some time lag ΔT, from which the phase velocity of sea waves is deduced. Comparing the sea wave directional spectra disambiguated by both methods, with the directional spectrum given by the wave rider, it is concluded that the first method (using Doppler velocity) is more efficient to remove the 180° ambiguity and should be preferred to the second method.

Corresponding author address: Gérard Caudal, LATMOS-IPSL, Université de Versailles Saint-Quentin-en-Yvelines, 11 Boulevard d’Alembert, 78280 Guyancourt CEDEX, France. E-mail: gerard.caudal@latmos.ipsl.fr

Abstract

This study presents the new airborne Doppler radar Ku-Band Radar for Observation of Surfaces (KuROS), which provides measurements of the normalized radar cross section σ° and of the Doppler velocity over the sea. The system includes two antennas rotating around a vertical axis, although only the results from the lower incidence (14°) antenna are presented here. Also given are the first results from observations performed during two field campaigns held in 2013: the Hydrological Cycle in Mediterranean Experiment (HyMeX) and the Prévision Océanique, Turbidité, Ecoulements, Vagues et Sédimentologie (PROTEVS).

Sea wave directional spectra computed by the radar from tilt modulation of σ° are consistent with those given by the directional wave rider moored in the Mediterranean basin, both in terms of significant wave height Hs and main features of the wavenumber spectrum. As concerns the azimuthal distribution, two methods are tested to remove the 180° ambiguity of the radar-derived directional spectrum. The first method is based on the correlation between the modulations of σ° and Doppler velocity, which reflects the correlation between the sea surface slope and orbital velocity. The second method does not use the Doppler velocity but computes the cross spectrum between the modulations of σ° between two power profiles separated by some time lag ΔT, from which the phase velocity of sea waves is deduced. Comparing the sea wave directional spectra disambiguated by both methods, with the directional spectrum given by the wave rider, it is concluded that the first method (using Doppler velocity) is more efficient to remove the 180° ambiguity and should be preferred to the second method.

Corresponding author address: Gérard Caudal, LATMOS-IPSL, Université de Versailles Saint-Quentin-en-Yvelines, 11 Boulevard d’Alembert, 78280 Guyancourt CEDEX, France. E-mail: gerard.caudal@latmos.ipsl.fr
Save
  • Caudal, G., Dinnat E. , and Boutin J. , 2005: Absolute calibration of radar altimeters: Consistency with electromagnetic modeling. J. Atmos. Oceanic Technol., 22, 771781, doi:10.1175/JTECH1743.1.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., 2006: Wave modeling: Where to go in the future. Bull. Amer. Meteor. Soc., 87, 207214, doi:10.1175/BAMS-87-2-207.

  • Cavaleri, L., and Coauthors, 2007: Wave modelling—The state of the art. Prog. Oceanogr., 75, 603674, doi:10.1016/j.pocean.2007.05.005.

    • Search Google Scholar
    • Export Citation
  • Chapron, B., Collard F. , and Ardhuin F. , 2005: Direct measurements of ocean surface velocity from space: Interpretation and validation. J. Geophys. Res., 110, C07008, doi:10.1029/2004JC002809.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and Coauthors, 2014: HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-12-00242.1, in press.

    • Search Google Scholar
    • Export Citation
  • Engen, G., and Johnsen H. , 1995: SAR-ocean wave inversion using image cross spectra. IEEE Trans. Geosci. Remote Sens., 33, 1047–1056, doi:10.1109/36.406690.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Vanhoff B. A. , 2003: The relationship between winds, surface roughness, and radar backscatter at low incidence angles from TRMM precipitation radar measurements. J. Atmos. Oceanic Technol., 20, 549562, doi:10.1175/1520-0426(2003)20<549:TRBWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fuchs, B., and Fuchs J. J. , 2010: Optimal narrow beam low sidelobe synthesis for arbitrary arrays. IEEE Trans. Antennas Propag., 58, 21302135, doi:10.1109/TAP.2010.2046863.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, F. I., and Coauthors, 1979: Seasat synthetic aperture radar: Ocean wave detection capabilities. Science, 204, 14181421, doi:10.1126/science.204.4400.1418.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., and Caudal G. , 1996: Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation. J. Geophys. Res., 101, 25 83325 846, doi:10.1029/96JC02124.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., Caudal G. , Rijckenberg G. J. , Vidal-Madjar D. , Laurent G. , and Lancelin P. , 1992: RESSAC: A new airborne FM/CW radar ocean wave spectrometer. IEEE Trans. Geosci. Remote Sens., 30, 981995, doi:10.1109/36.175333.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., Podvin T. , Dechambre M. , Valentin R. , Caudal G. , and Daloze J.-F. , 2003: STORM: A new airborne polarimetric real-aperture radar for earth observations. Proceedings of the Workshop on “POLinSAR”: Applications of SAR Polarimetry and Polarimetric Interferometry, H. Lacoste, Ed., ESA SP-529. [Available online at http://www.esa.int/esapub/conference/toc/tocSP529.pdf.]

  • Hauser, D., Tison C. , Lefèvre J.-M. , Lambin J. , Amiot T. , Aouf L. , Collard F. , and Castillan P. , 2010: Measuring ocean waves from space: Objectives and characteristics of the China-France Oceanography Satellite (CFOSAT). Ocean Engineering, Polar and Artctic Sciences and Technology, Vol. 4, Proceedings of the ASME: 29th International Conference on Ocean, Offshore and Arctic Engineering, 2010, ASME, 85–90, doi:10.1115/OMAE2010-20184.

  • Jackson, F. C., Walton W. T. , and Baker P. L. , 1985a: Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars. J. Geophys. Res., 90, 9871004, doi:10.1029/JC090iC01p00987.

    • Search Google Scholar
    • Export Citation
  • Jackson, F. C., Walton W. T. , and Peng C. Y. , 1985b: A comparison of in situ and airborne radar observations of ocean wave directionality. J. Geophys. Res., 90, 10051018, doi:10.1029/JC090iC01p01005.

    • Search Google Scholar
    • Export Citation
  • Pettersson, H., Graber H. C. , Hauser D. , Quentin C. , Kahma K. K. , Drennan W. M. , and Donelan M. A. , 2003: Directional wave measurements from three wave sensors during the FETCH experiment. J. Geophys. Res., 108, 8061, doi:10.1029/2001JC001164.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., Keller W. C. , and Hayes K. , 2005: Simultaneous measurements of ocean winds and waves with an airborne coherent real aperture radar. J. Atmos. Oceanic Technol., 22, 832846, doi:10.1175/JTECH1724.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. R., Gotwols B. L. , and Keller W. C. , 1991: A comparison of Ku-band Doppler measurements at 20° incidence with predictions from a time-dependent scattering model. J. Geophys. Res., 96, 49474955, doi:10.1029/90JC02210.

    • Search Google Scholar
    • Export Citation
  • Tran, N., Chapron B. , and Vandemark D. , 2007: Effect of long waves on Ku-band ocean radar backscatter at low incidence angles using TRMM and altimeter data. IEEE Geosci. Remote Sens. Lett., 4, 542546, doi:10.1109/LGRS.2007.896329.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., Moore R. K. , and Fung A. K. , 1986: Radar Remote Sensing and Surface Scattering and Emission Theory. Vol. II, Microwave Remote Sensing, Active and Passive, Artech House, 608 pp.

  • Walsh, E. J., Hanckock D. W. , Hines D. E. , Swift R. N. , and Scott J. F. , 1985: Directional wave spectra measured with the surface contour radar. J. Phys. Oceanogr., 15, 566592, doi:10.1175/1520-0485(1985)015<0566:DWSMWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and Smith D. K. , 1999: A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104, 11 49911 514, doi:10.1029/98JC02148.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1977: Spectral moment estimates from correlated pulse pairs. IEEE Trans. Aerosp. Electron. Syst., AES-13,344354, doi:10.1109/TAES.1977.308467.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1132 463 108
PDF Downloads 1078 114 7