• Ackroyd, M. H., , and Ghani F. , 1973: Optimum mismatched filters for sidelobe suppression. IEEE Trans. Aerosp. Electron. Syst., AES-9, 214218, doi:10.1109/TAES.1973.309769.

    • Search Google Scholar
    • Export Citation
  • Austin, G. L., 1974: Pulse compression systems for use with meteorological radars. Radio Sci., 9, 2933, doi:10.1029/RS009i001p00029.

  • Baden, J. M., , and Cohen M. N. , 1990: Optimal peak sidelobe filters for biphase pulse compression. Record of the IEEE 1990 International Radar Conference, IEEE, 249252.

  • Bharadwaj, N., , and Chandrasekar V. , 2012: Wideband waveform design principles for solid-state weather radars. J. Atmos. Oceanic Technol., 29, 1431, doi:10.1175/JTECH-D-11-00030.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , French M. M. , , PopStefanija I. , , Bluth R. T. , , and Knorr J. B. , 2010: A mobile, phased-array Doppler radar for the study of severe convective storms: The MWR-05XP. Bull. Amer. Meteor. Soc., 91, 579600, doi:10.1175/2009BAMS2914.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , Chandrasekar V. , , Balakrishnan N. , , and Zrnić D. S. , 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, doi:10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., , and Wood V. T. , 2012: Simulated vortex detection using a four-face phased-array Doppler radar. Wea. Forecasting, 27, 15981603, doi:10.1175/WAF-D-12-00059.1.

    • Search Google Scholar
    • Export Citation
  • Bucci, N. J., , and Urkowitz H. , 1993: Testing of Doppler tolerant range sidelobe suppression in pulse compression meteorological radar. Record of the 1993 IEEE National Radar Conference, IEEE, 206211.

  • Bucci, N. J., , Owen H. S. , , Woodward K. A. , , and Hawes C. M. , 1997: Validation of pulse compression techniques for meteorological functions. IEEE Trans. Geosci. Remote Sens. Lett., 35, 507523, doi:10.1109/36.581958.

    • Search Google Scholar
    • Export Citation
  • Carswell, J., , Bidwell S. , , and Meneghini R. , 2008: A novel solid-state, dual-polarized, dual wavelength precipitation Doppler radar/radiometer. 2008 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, Vol. 5, IEEE, IV-1014–IV-1017.

  • Cheong, B. L., , Kelley R. , , Palmer R. D. , , Zhang Y. , , Yeary M. , , and Yu T.-Y. , 2013: PX-1000: A solid-state polarimetric X-band radar and time-frequency multiplexed waveform for blind range mitigation. IEEE Trans. Instrum. Meas., 62, 30643072, doi:10.1109/TIM.2013.2270046.

    • Search Google Scholar
    • Export Citation
  • Cilliers, J. E., , and Smit J. C. , 2007: Pulse compression sidelobe reduction by minimization of Lp-norms. IEEE Trans. Aerosp. Electron. Syst., 43, 12381247, doi:10.1109/TAES.2007.4383616.

    • Search Google Scholar
    • Export Citation
  • De Witte, E., , and Griffiths H. D. , 2004: Improved ultra-low range sidelobe pulse compression waveform design. IEEE Electron. Lett., 40, 14481450, doi:10.1049/el:20046548.

    • Search Google Scholar
    • Export Citation
  • Doviak, R., , and Zrnić D. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Doviak, R. J., , Bringi V. , , Ryzhkov A. , , Zahrai A. , , and Zrnić D. , 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278, doi:10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duh, F. B., , Juang C. F. , , and Lin C. T. , 2004: A neural fuzzy network approach to radar pulse compression. IEEE Geosci. Remote Sens. Lett., 1, 1520, doi:10.1109/LGRS.2003.822310.

    • Search Google Scholar
    • Export Citation
  • Eiben, A. E., , and Smith J. E. , 2007: Introduction to Evolutionary Computing. 2nd ed. Natural Computing Series, Springer, 300 pp.

  • Farin, G. E., 1997: Curves and Surfaces for CAGD: A Practical Guide. 4th ed. Computer Science and Scientific Computing, Academic Press, 429 pp.

  • Ge, Z., , Huang P. , , and Lu W. , 2008: Matched NLFM pulse compression method with ultra-low sidelobes. EuRAD 2008: European Radar Conference, IEEE, 9295.

  • George, J., , Bharadwaj N. , , and Chandrasekar V. , 2008: Considerations in pulse compression design for weather radars. 2008 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, Vol. 5, IEEE, V-109–V-112.

  • Gorgucci, E., , and Chandrasekar V. , 2005: Evaluation of attenuation correction methodology for dual-polarization radars: Application to X-band systems. J. Atmos. Oceanic Technol., 22, 11951206, doi:10.1175/JTECH1763.1.

    • Search Google Scholar
    • Export Citation
  • Griffiths, H. D., , and Vinagre L. , 1994: Design of low-sidelobe pulse compression waveforms. IEEE Electron. Lett., 30, 10041005, doi:10.1049/el:19940644.

    • Search Google Scholar
    • Export Citation
  • Harris, F. J., 1978: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 66, 5183, doi:10.1109/PROC.1978.10837.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., , Priegnitz D. L. , , Manross K. L. , , Smith T. M. , , and Adams R. W. , 2008: Rapid sampling of severe storms by the National Weather Radar Testbed Phased Array Radar. Wea. Forecasting, 23, 808824, doi:10.1175/2008WAF2007071.1.

    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., , Schroeder J. L. , , Gunter S. W. , , and Guynes J. G. , 2012: Measuring a utility-scale turbine wake using the TTUKa mobile research radars. J. Atmos. Oceanic Technol., 29, 765771, doi:10.1175/JTECH-D-12-00039.1.

    • Search Google Scholar
    • Export Citation
  • Holland, J., 1975: Adaption in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, 183 pp.

  • Keeler, R. J., , and Hwang C. A. , 1995: Pulse compression for weather radar. Record of the IEEE 1995 International Radar Conference, IEEE, 529535.

  • Kumjian, M. R., , and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Lei, L., , Zhang G. , , Doviak R. J. , , Palmer R. , , Cheong B. L. , , Xue M. , , Cao Q. , , and Li Y. , 2012: Multilag correlation estimators for polarimetric radar measurements in the presence of noise. J. Atmos. Oceanic Technol., 29, 772795, doi:10.1175/JTECH-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
  • Levanon, N., , and Mozeson E. , 2004: Radar Signals. Wiley, 432 pp.

  • McLaughlin, D., and et al. , 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, doi:10.1175/2009BAMS2507.1.

    • Search Google Scholar
    • Export Citation
  • Mudukutore, A. S., , Chandrasekar V. , , and Keeler R. J. , 1998: Pulse compression for weather radars. IEEE Trans. Geosci. Remote Sens., 36, 125142, doi:10.1109/36.655323.

    • Search Google Scholar
    • Export Citation
  • O’Hora, F., , and Bech J. , 2007: Improving weather radar observations using pulse-compression techniques. Meteor. Appl., 14, 389401, doi:10.1002/met.38.

    • Search Google Scholar
    • Export Citation
  • Park, S. G., , Bringi V. N. , , Chandrasekar V. , , Maki M. , , and Iwanami K. , 2005: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. J. Atmos. Oceanic Technol., 22, 16211632, doi:10.1175/JTECH1803.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, doi:10.1175/JTECH2003.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , and Zrnić D. S. , 2005: Radar polarimetry at S, C, and X bands: Comparative analysis and operational implications. 32nd Conf. Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 9R.3. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_95684.htm.]

  • Snyder, J. C., , Bluestein H. B. , , Zhang G. , , and Frasier S. J. , 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, doi:10.1175/2010JTECHA1356.1.

    • Search Google Scholar
    • Export Citation
  • Wang, P., , Meng H. , , and Xiqin W. , 2008: Suppressing autocorrelation sidelobes of LFM pulse trains with genetic algorithm. Tsinghua Sci. Technol., 13, 800806, doi:10.1016/S1007-0214(08)72203-X.

    • Search Google Scholar
    • Export Citation
  • Weadon, M., , Heinselman P. , , Forsyth D. , , Kimpel J. , , Benner W. E. , , and Torok G. S. , 2009: Multifunction phased array radar. Bull. Amer. Meteor. Soc., 90, 385389, doi:10.1175/2008BAMS2666.1.

    • Search Google Scholar
    • Export Citation
  • Weber, M. E., , Cho J. Y. N. , , Herd J. S. , , Flavin J. M. , , Benner W. E. , , and Torok G. S. , 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 17391751, doi:10.1175/BAMS-88-11-1739.

    • Search Google Scholar
    • Export Citation
  • Yichun, P., , Shirui P. , , Kefeng Y. , , and Wenfeng D. , 2005: Optimization design of NLFM signal and its pulse compression simulation. 2005 IEEE International Radar Conference, IEEE, 383386.

  • Yussouf, N., , and Stensrud D. J. , 2008: Impact of high temporal frequency radar data assimilation on storm-scale NWP model simulations. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 9B.1. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141555.htm.]

  • Zhang, G., , Doviak R. J. , , Zrnić D. S. , , Palmer R. , , Lei L. , , and Al-Rashid Y. , 2011: Polarimetric phased-array radar for weather measurement: A planar or cylindrical configuration? J. Atmos. Oceanic Technol., 28, 6373, doi:10.1175/2010JTECHA1470.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and et al. , 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, doi:10.1175/BAMS-88-11-1753.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 239 239 61
PDF Downloads 257 257 80

A Pulse Compression Waveform for Improved-Sensitivity Weather Radar Observations

View More View Less
  • 1 School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 2 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 3 School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 4 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

The progression of phased array weather observations, research, and planning over the past decade has led to significant advances in development efforts for future weather radar technologies. However, numerous challenges still remain for large-scale deployment. The eventual goal for phased array weather radar technology includes the use of active arrays, where each element would have its own transmit/receive module. This would lead to significant advantages; however, such a design must be capable of utilizing low-power, solid-state transmitters at each element in order to keep costs down. To provide acceptable sensitivity, as well as the range resolution needed for weather observations, pulse compression strategies are required. Pulse compression has been used for decades in military applications, but it has yet to be applied on a broad scale to weather radar, partly because of concerns regarding sensitivity loss caused by pulse windowing. A robust optimization technique for pulse compression waveforms with minimalistic windowing using a genetic algorithm is presented. A continuous nonlinear frequency-modulated waveform that takes into account transmitter distortion is shown, both in theory and in practical use scenarios. Measured pulses and weather observations from the Advanced Radar Research Center’s dual-polarized PX-1000 transportable radar, which utilizes dual 100-W solid-state transmitters, are presented. Both stratiform and convective scenarios, as well as dual-polarization observations, are shown, demonstrating significant improvement in sensitivity over previous pulse compression methods.

Corresponding author address: James M. Kurdzo, Advanced Radar Research Center, 3190 Monitor Avenue, Norman, OK 73019. E-mail: kurdzo@ou.edu

Abstract

The progression of phased array weather observations, research, and planning over the past decade has led to significant advances in development efforts for future weather radar technologies. However, numerous challenges still remain for large-scale deployment. The eventual goal for phased array weather radar technology includes the use of active arrays, where each element would have its own transmit/receive module. This would lead to significant advantages; however, such a design must be capable of utilizing low-power, solid-state transmitters at each element in order to keep costs down. To provide acceptable sensitivity, as well as the range resolution needed for weather observations, pulse compression strategies are required. Pulse compression has been used for decades in military applications, but it has yet to be applied on a broad scale to weather radar, partly because of concerns regarding sensitivity loss caused by pulse windowing. A robust optimization technique for pulse compression waveforms with minimalistic windowing using a genetic algorithm is presented. A continuous nonlinear frequency-modulated waveform that takes into account transmitter distortion is shown, both in theory and in practical use scenarios. Measured pulses and weather observations from the Advanced Radar Research Center’s dual-polarized PX-1000 transportable radar, which utilizes dual 100-W solid-state transmitters, are presented. Both stratiform and convective scenarios, as well as dual-polarization observations, are shown, demonstrating significant improvement in sensitivity over previous pulse compression methods.

Corresponding author address: James M. Kurdzo, Advanced Radar Research Center, 3190 Monitor Avenue, Norman, OK 73019. E-mail: kurdzo@ou.edu
Save